SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Cerebral folate transport deficiency
URL of this page: https://medlineplus.gov/genetics/condition/cerebral-folate-transport-deficiency/

Cerebral folate transport deficiency

Description

Cerebral folate transport deficiency is a disorder that develops from a shortage (deficiency) of the B-vitamin folate (also called vitamin B9) in the brain. Affected children have normal development during infancy, but around age 2 they begin to lose previously acquired mental and movement abilities (psychomotor regression). They develop intellectual disability, speech difficulties, and recurrent seizures (epilepsy). Movement problems such as tremors and difficulty coordinating movements (ataxia) can be severe, and some affected individuals need wheelchair assistance. Affected individuals have leukodystrophy, which is a loss of a type of brain tissue known as white matter. White matter consists of nerve fibers covered by a fatty substance called myelin that promotes the rapid transmission of nerve impulses. Leukodystrophy contributes to the neurological problems that occur in cerebral folate transport deficiency. Without treatment, these neurological problems worsen over time.

Frequency

The prevalence of cerebral folate transport deficiency is unknown. Fewer than 20 affected individuals have been described in the scientific literature.

Causes

Mutations in the FOLR1 gene cause cerebral folate transport deficiency. The FOLR1 gene provides instructions for making a protein called folate receptor alpha. This protein is found within the cell membrane where it attaches (binds) to folate, allowing the vitamin to be brought into the cell. Folate receptor alpha is produced in largest amounts in the brain, specifically in an area of the brain called the choroid plexus. This region releases cerebrospinal fluid (CSF), which surrounds and protects the brain and spinal cord. Folate receptor alpha is thought to play a major role in bringing folate from the bloodstream into brain cells. It transports folate across the choroid plexus and into the CSF, ultimately reaching the brain. In the brain, folate is needed for making myelin and chemical messengers called neurotransmitters. Both of these substances play essential roles in transmitting signals in the nervous system. Additionally, folate is involved in the production and repair of DNA, regulation of gene activity (expression), and protein production.

FOLR1 gene mutations result in a lack of protein or malfunctioning protein. As a result, folate from the bloodstream cannot be transported into the CSF. Without folate, many processes in the brain are impaired, leading to the neurological problems typical of cerebral folate transport deficiency.

The signs and symptoms of cerebral folate transport deficiency do not begin until late infancy because other mechanisms can compensate for this loss. For example, another protein called folate receptor beta is responsible for folate transport before birth and in early infancy.

Learn more about the gene associated with Cerebral folate transport deficiency

  • FOLR1

Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

  • Cerebral folate deficiency
  • FOLR1 deficiency
  • Neurodegeneration due to cerebral folate transport deficiency

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Cerebral folate transport deficiency From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Neurodegenerative syndrome due to cerebral folate transport deficiency From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • NEURODEGENERATION DUE TO CEREBRAL FOLATE TRANSPORT DEFICIENCY; NCFTD

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Cario H, Bode H, Debatin KM, Opladen T, Schwarz K. Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment. Neurology. 2009 Dec 15;73(24):2127-9. doi: 10.1212/WNL.0b013e3181c679df. No abstract available. Citation on PubMed
  • Grapp M, Just IA, Linnankivi T, Wolf P, Lucke T, Hausler M, Gartner J, Steinfeld R. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain. 2012 Jul;135(Pt 7):2022-31. doi: 10.1093/brain/aws122. Epub 2012 May 13. Citation on PubMed
  • Grapp M, Wrede A, Schweizer M, Huwel S, Galla HJ, Snaidero N, Simons M, Buckers J, Low PS, Urlaub H, Gartner J, Steinfeld R. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013;4:2123. doi: 10.1038/ncomms3123. Citation on PubMed
  • Hyland K, Shoffner J, Heales SJ. Cerebral folate deficiency. J Inherit Metab Dis. 2010 Oct;33(5):563-70. doi: 10.1007/s10545-010-9159-6. Epub 2010 Jul 29. Citation on PubMed
  • Perez-Duenas B, Ormazabal A, Toma C, Torrico B, Cormand B, Serrano M, Sierra C, De Grandis E, Marfa MP, Garcia-Cazorla A, Campistol J, Pascual JM, Artuch R. Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch Neurol. 2011 May;68(5):615-21. doi: 10.1001/archneurol.2011.80. Citation on PubMed
  • Perez-Duenas B, Toma C, Ormazabal A, Muchart J, Sanmarti F, Bombau G, Serrano M, Garcia-Cazorla A, Cormand B, Artuch R. Progressive ataxia and myoclonic epilepsy in a patient with a homozygous mutation in the FOLR1 gene. J Inherit Metab Dis. 2010 Dec;33(6):795-802. doi: 10.1007/s10545-010-9196-1. Epub 2010 Sep 21. Citation on PubMed
  • Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gartner J. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet. 2009 Sep;85(3):354-63. doi: 10.1016/j.ajhg.2009.08.005. Citation on PubMed or Free article on PubMed Central
  • Toelle SP, Wille D, Schmitt B, Scheer I, Thony B, Plecko B. Sensory stimulus-sensitive drop attacks and basal ganglia calcification: new findings in a patient with FOLR1 deficiency. Epileptic Disord. 2014 Mar;16(1):88-92. doi: 10.1684/epd.2014.0629. Citation on PubMed
Enlarge image

Related Health Topics

  • Developmental Disabilities
  • Folic Acid
  • Genetic Disorders
  • Leukodystrophies
  • Speech and Language Problems in Children

MEDICAL ENCYCLOPEDIA

  • Folate deficiency
  • Folic acid - test
  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated December 1, 2019
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP