SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
CACNA1F gene
URL of this page: https://medlineplus.gov/genetics/gene/cacna1f/

CACNA1F gene

calcium voltage-gated channel subunit alpha1 F

Normal Function

The CACNA1F gene belongs to a family of genes that provide instructions for making calcium channels. These channels, which transport positively charged calcium atoms (calcium ions) across cell membranes, play a key role in a cell's ability to generate and transmit electrical signals.

The CACNA1F gene provides instructions for making one part (the alpha-1 subunit) of a calcium channel called CaV1.4. This subunit forms the hole (pore) in the cell membrane through which calcium ions can flow. CaV1.4 channels are found in many types of cells, although they play a particularly important role in a specialized tissue at the back of the eye called the retina. Within the retina, the channels are located in light-detecting cells called photoreceptors. The retina contains two types of photoreceptors: rods and cones. Rods are needed for vision in low light. Cones are needed for vision in bright light, including color vision.

CaV1.4 channels play a critical role in normal vision. Studies suggest they help relay visual signals from rods and cones to other retinal cells called bipolar cells. This signaling is an essential step in the transmission of visual information from the eyes to the brain.

Health Conditions Related to Genetic Changes

X-linked congenital stationary night blindness

Variants (also called mutations) in the CACNA1F gene have been identified in people with X-linked congenital stationary night blindness. CACNA1F gene variants are responsible for the incomplete form of the disorder. People with this form of the disorder have vision problems such as increased sensitivity to light (photophobia), a loss of sharpness (reduced acuity), involuntary movements of the eyes (nystagmus). Many affected individuals also have difficulty seeing in low light (night blindness).

Variants in the CACNA1F gene change the structure of the alpha-1 subunit. These changes make it difficult for CaV1.4 channels to transport calcium ions across the cell membrane of photoreceptor cells. A loss of calcium ion transport disrupts the ability of both rods and cones to transmit visual signals, which impairs vision in people with X-linked congenital stationary night blindness.

More About This Health Condition

Cone-rod dystrophy

MedlinePlus Genetics provides information about Cone-rod dystrophy

More About This Health Condition

Other disorders

Variants in the CACNA1F gene can cause another rare disorder that impairs vision known as Åland Islands eye disease. This condition causes vision problems similar to those seen in people with X-linked congenital stationary night blindness.

Researchers have identified at least one CACNA1F gene variant that can cause Åland Islands eye disease (also known as Forsius-Eriksson syndrome). This condition was first described in a family from the Åland Islands, which are in the Baltic Sea off the coast of Sweden. Åland Islands eye disease is characterized by reduced visual acuity, nystagmus, an irregular curvature of the front part of the eye (astigmatism), nearsightedness (myopia), abnormal color vision, and night blindness. The variant associated with this disorder deletes a segment of genetic material from the CACNA1F gene. This deletion significantly alters the structure of the alpha-1 subunit of CaV1.4 channels and makes it difficult for calcium ions to move across the cell membrane of photoreceptor cells. A loss of calcium ion transport disrupts the ability of both rods and cones to transmit visual signals, leading to the vision problems seen in people with Åland Islands eye disease.


Other Names for This Gene

  • CAC1F_HUMAN
  • Cav1.4
  • Cav1.4alpha1

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of CACNA1F From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • CALCIUM CHANNEL, VOLTAGE-DEPENDENT, ALPHA-1F SUBUNIT; CACNA1F

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet. 1998 Jul;19(3):264-7. doi: 10.1038/947. Citation on PubMed
  • Boycott KM, Maybaum TA, Naylor MJ, Weleber RG, Robitaille J, Miyake Y, Bergen AA, Pierpont ME, Pearce WG, Bech-Hansen NT. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet. 2001 Feb;108(2):91-7. doi: 10.1007/s004390100461. Citation on PubMed
  • Hoda JC, Zaghetto F, Koschak A, Striessnig J. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci. 2005 Jan 5;25(1):252-9. doi: 10.1523/JNEUROSCI.3054-04.2005. Citation on PubMed
  • Hoda JC, Zaghetto F, Singh A, Koschak A, Striessnig J. Effects of congenital stationary night blindness type 2 mutations R508Q and L1364H on Cav1.4 L-type Ca2+ channel function and expression. J Neurochem. 2006 Mar;96(6):1648-58. doi: 10.1111/j.1471-4159.2006.03678.x. Epub 2006 Feb 10. Citation on PubMed
  • Jalkanen R, Bech-Hansen NT, Tobias R, Sankila EM, Mantyjarvi M, Forsius H, de la Chapelle A, Alitalo T. A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci. 2007 Jun;48(6):2498-502. doi: 10.1167/iovs.06-1103. Citation on PubMed
  • Jalkanen R, Mantyjarvi M, Tobias R, Isosomppi J, Sankila EM, Alitalo T, Bech-Hansen NT. X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet. 2006 Aug;43(8):699-704. doi: 10.1136/jmg.2006.040741. Epub 2006 Feb 27. Citation on PubMed or Free article on PubMed Central
  • Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch. 2021 Sep;473(9):1437-1454. doi: 10.1007/s00424-021-02570-x. Epub 2021 Jul 1. Citation on PubMed
  • MacDonald IM, Hoang S, Tuupanen S. X-Linked Congenital Stationary Night Blindness. 2008 Jan 16 [updated 2019 Jul 3]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK1245/ Citation on PubMed
  • McRory JE, Hamid J, Doering CJ, Garcia E, Parker R, Hamming K, Chen L, Hildebrand M, Beedle AM, Feldcamp L, Zamponi GW, Snutch TP. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci. 2004 Feb 18;24(7):1707-18. doi: 10.1523/JNEUROSCI.4846-03.2004. Citation on PubMed
  • Peloquin JB, Rehak R, Doering CJ, McRory JE. Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience. 2007 Dec 5;150(2):335-45. doi: 10.1016/j.neuroscience.2007.09.021. Epub 2007 Sep 14. Citation on PubMed
  • Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BH, Wutz K, Gutwillinger N, Ruther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. 1998 Jul;19(3):260-3. doi: 10.1038/940. Citation on PubMed
  • Wutz K, Sauer C, Zrenner E, Lorenz B, Alitalo T, Broghammer M, Hergersberg M, de la Chapelle A, Weber BH, Wissinger B, Meindl A, Pusch CM. Thirty distinct CACNA1F mutations in 33 families with incomplete type of XLCSNB and Cacna1f expression profiling in mouse retina. Eur J Hum Genet. 2002 Aug;10(8):449-56. doi: 10.1038/sj.ejhg.5200828. Citation on PubMed
  • Wygledowska-Promienska D, Swierczynska M, Spiewak D, Pojda-Wilczek D, Tronina A, Dorecka M, Smedowski A. Aland Island Eye Disease with Retinoschisis in the Clinical Spectrum of CACNA1F-Associated Retinopathy-A Case Report. Int J Mol Sci. 2024 Mar 2;25(5):2928. doi: 10.3390/ijms25052928. Citation on PubMed
  • Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015 Mar;45:58-110. doi: 10.1016/j.preteyeres.2014.09.001. Epub 2014 Oct 13. Citation on PubMed
DNA helix

Genomic Location

The CACNA1F gene is found on the X chromosome.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated June 21, 2024
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP