SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
CBFB gene
URL of this page: https://medlineplus.gov/genetics/gene/cbfb/

CBFB gene

core-binding factor subunit beta

Normal Function

The CBFB gene provides instructions for making a protein called core binding factor beta (CBFβ), which is one piece of a protein complex known as core binding factor (CBF). CBFβ attaches (binds) to one of three related RUNX proteins (RUNX1, RUNX2, or RUNX3) to form different versions of CBF. These protein complexes bind to specific regions of DNA and help turn on (activate) certain genes.

The presence of CBFβ helps the complex bind to DNA and protects the RUNX protein from being broken down. The function of CBF depends on which RUNX protein it includes. Once bound to DNA, the RUNX1 protein controls the activity of genes involved in the development of blood cells (hematopoiesis). The RUNX2 protein regulates genes important for bone cell development and formation of the skeleton. The RUNX3 protein primarily affects genes involved in the development of nerve cells.

Health Conditions Related to Genetic Changes

Core binding factor acute myeloid leukemia

Rearrangements of genetic material affecting the CBFB gene are involved in a form of blood cancer known as acute myeloid leukemia (AML). Because the genetic changes affect CBF, the condition is classified as core binding factor AML (CBF-AML). The most common of these rearrangements is an inversion of a region of chromosome 16 (written as inv(16)). An inversion involves breakage of the chromosome in two places; the resulting piece of DNA is reversed and reinserted into the chromosome. Less commonly, a rearrangement known as a translocation occurs between the two copies of chromosome 16 (written as t(16;16)). In this translocation, pieces of DNA from each copy of the chromosome break off and are interchanged. Both types of genetic rearrangement lead to the fusion of parts of two genes on chromosome 16, CBFB and MYH11. These rearrangements are associated with 5 to 8 percent of cases of AML in adults.

When these rearrangements occur in early blood cells, the function of the RUNX1 protein is particularly affected. The protein produced from the fusion gene, called CBFβ-MYH11, can still bind to RUNX1 to form CBF. However, the function of CBF is impaired. The presence of CBFβ-MYH11 may block binding of CBF to DNA, preventing RUNX1 from controlling gene activity. Alternatively, the MYH11 portion of the fusion protein may interact with other proteins that prevent RUNX1 from controlling gene activity. This change in gene activity blocks the maturation (differentiation) of blood cells and leads to the production of abnormal, immature white blood cells called myeloid blasts. While inv(16) and t(16;16) are important for leukemia development, one or more additional genetic changes are typically needed for the myeloid blasts to develop into cancerous leukemia cells.

More About This Health Condition

Other Names for This Gene

  • CBF-beta
  • core-binding factor beta subunit
  • core-binding factor, beta subunit
  • PEA2-beta
  • PEBB_HUMAN
  • PEBP2-beta
  • PEBP2B
  • polyomavirus enhancer binding protein 2, beta subunit
  • polyomavirus enhancer-binding protein 2 beta subunit
  • SL3-3 enhancer factor 1 beta subunit
  • SL3-3 enhancer factor 1 subunit beta
  • SL3/AKV core-binding factor beta subunit

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of CBFB From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • CORE-BINDING FACTOR, BETA SUBUNIT; CBFB

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Eghtedar A, Borthakur G, Ravandi F, Jabbour E, Cortes J, Pierce S, Kantarjian H, Garcia-Manero G. Characteristics of translocation (16;16)(p13;q22) acute myeloid leukemia. Am J Hematol. 2012 Mar;87(3):317-8. doi: 10.1002/ajh.22258. Epub 2012 Jan 7. Citation on PubMed or Free article on PubMed Central
  • Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol. 2011 Aug;94(2):126-133. doi: 10.1007/s12185-011-0858-z. Epub 2011 May 3. Citation on PubMed
  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. 2001 Feb 15;20(4):723-33. doi: 10.1093/emboj/20.4.723. Citation on PubMed or Free article on PubMed Central
  • Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004 May 24;23(24):4297-307. doi: 10.1038/sj.onc.1207748. Citation on PubMed
  • Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002 Dec;32(4):633-8. doi: 10.1038/ng1015. Epub 2002 Nov 18. Citation on PubMed
DNA helix

Genomic Location

The CBFB gene is found on chromosome 16.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated November 1, 2013
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP