SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
COL9A2 gene
URL of this page: https://medlineplus.gov/genetics/gene/col9a2/

COL9A2 gene

collagen type IX alpha 2 chain

Normal Function

The COL9A2 gene provides instructions for making part of a large molecule called type IX collagen. Collagens are a family of proteins that strengthen and support connective tissues, such as skin, bone, cartilage, tendons, and ligaments. In particular, type IX collagen is an important component of cartilage, which is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears.

Type IX collagen is made up of three proteins that are produced from three distinct genes: one α1(IX) chain, which is produced from the COL9A1 gene, one α2(IX) chain, which is produced from the COL9A2 gene, and one α3(IX) chain, which is produced from the COL9A3 gene. Type IX collagen is more flexible than other types of collagen molecules and is closely associated with type II collagen. Researchers believe that the flexible nature of type IX collagen allows it to act as a bridge that connects type II collagen with other cartilage components. Studies have shown that type IX collagen also interacts with the proteins produced from the MATN3 and COMP genes.

Health Conditions Related to Genetic Changes

Multiple epiphyseal dysplasia

At least five mutations in the COL9A2 gene have been shown to cause dominant multiple epiphyseal dysplasia, a disorder of cartilage and bone development that primarily affects the ends of the long bones in the arms and legs (epiphyses). All of these mutations disrupt how genetic information is spliced together to make the blueprint for producing the α2(IX) chain. These mutations, called splice-site mutations, change one DNA building block (nucleotide) near an area of the gene called exon 3. These mutations in the COL9A2 gene result in the deletion of 12 protein building blocks (amino acids) from the α2(IX) chain. It is not known how mutations in COL9A2 cause the signs and symptoms of dominant multiple epiphyseal dysplasia.

More About This Health Condition

Stickler syndrome

MedlinePlus Genetics provides information about Stickler syndrome

More About This Health Condition

Intervertebral disc disease

MedlinePlus Genetics provides information about Intervertebral disc disease

More About This Health Condition

Other Names for This Gene

  • alpha 2 type IX collagen
  • CO9A2_HUMAN
  • collagen IX, alpha-2 polypeptide
  • collagen type IX alpha 2
  • collagen, type IX, alpha 2
  • EDM2
  • epiphyseal dysplasia, multiple 2

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of COL9A2 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • COLLAGEN, TYPE IX, ALPHA-2; COL9A2
  • INTERVERTEBRAL DISC DISEASE; IDD

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, Ala-Kokko L. A loss of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. Am J Med Genet A. 2011 Jul;155A(7):1668-72. doi: 10.1002/ajmg.a.34071. Epub 2011 Jun 10. Citation on PubMed
  • Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum Mutat. 2002 May;19(5):465-78. doi: 10.1002/humu.10066. Citation on PubMed
  • Briggs MD, Wright MJ, Mortier GR. Multiple Epiphyseal Dysplasia, Autosomal Dominant. 2003 Jan 8 [updated 2024 Jul 4]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK1123/ Citation on PubMed
  • Higashino K, Matsui Y, Yagi S, Takata Y, Goto T, Sakai T, Katoh S, Yasui N. The alpha2 type IX collagen tryptophan polymorphism is associated with the severity of disc degeneration in younger patients with herniated nucleus pulposus of the lumbar spine. Int Orthop. 2007 Feb;31(1):107-11. doi: 10.1007/s00264-006-0117-8. Epub 2006 Apr 4. Citation on PubMed or Free article on PubMed Central
  • Jim JJ, Noponen-Hietala N, Cheung KM, Ott J, Karppinen J, Sahraravand A, Luk KD, Yip SP, Sham PC, Song YQ, Leong JC, Cheah KS, Ala-Kokko L, Chan D. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine (Phila Pa 1976). 2005 Dec 15;30(24):2735-42. doi: 10.1097/01.brs.0000190828.85331.ef. Citation on PubMed
DNA helix

Genomic Location

The COL9A2 gene is found on chromosome 1.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated January 1, 2013
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP