SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
DNAJC5 gene
URL of this page: https://medlineplus.gov/genetics/gene/dnajc5/

DNAJC5 gene

DnaJ heat shock protein family (Hsp40) member C5

Normal Function

The DNAJC5 gene provides instructions for making a protein called cysteine string protein alpha (CSPα). This protein is found near nerve cells in the brain, where it plays a role in the transmission of nerve impulses. Specifically, CSPα is part of a group (complex) of proteins that is found on the membrane of sac-like structures called synaptic vesicles. Synaptic vesicles are found close to the ends of nerve cells and contain chemical messengers that transmit signals from one nerve cell to another. CSPα is involved in recycling proteins that are involved in nerve impulse transmission by re-folding misshapen proteins so that they can be used in additional transmissions.

Health Conditions Related to Genetic Changes

CLN4 disease

At least two mutations in the DNAJC5 gene have been found to cause CLN4 disease. CLN4 disease is an inherited disorder that primarily affects the nervous system. This condition usually begins in adulthood with problems with movement and intellectual function that worsen over time.

One of the DNAJC5 gene mutations replaces the protein building block (amino acid) leucine with the amino acid arginine at position 115 in the CSPα protein (written as L115R). The other mutation deletes the amino acid leucine at position 116 in the protein (written as L116del). Affected individuals have one of these mutations in one copy of the DNAJC5 gene in each cell, which leads to the production of an altered protein that cannot associate with the membrane of synaptic vesicles. The resulting reduction in protein recycling leads to a shortage (deficiency) of functional proteins, which impairs the efficiency of nerve impulse transmission. The abnormal CSPα protein may also bind to the functional CSPα protein that is produced from the normal copy of the DNAJC5 gene and prevent it from associating with synaptic vesicles, further impairing impulse transmission. Without communication between nerve cells, neurological functions are impaired, contributing to the features of CLN4 disease.

CLN4 disease is characterized by the accumulation of proteins and other substances in lysosomes, which are compartments in the cell that digest and recycle materials. These accumulations occur in cells throughout the body; however, nerve cells seem to be particularly vulnerable to their effects. The accumulations can cause cell damage leading to cell death. The progressive death of nerve cells in the brain and other tissues contributes to the decline of neurological function in CLN4 disease. However, it is unclear how mutations in the DNAJC5 gene are involved in the buildup of substances in lysosomes.

More About This Health Condition

Other Names for This Gene

  • CLN4
  • CLN4B
  • CSP
  • cysteine string protein alpha
  • DnaJ (Hsp40) homolog, subfamily C, member 5
  • dnaJ homolog subfamily C member 5
  • DNAJC5A
  • DNJC5_HUMAN
  • FLJ00118
  • FLJ13070

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of DNAJC5 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • DNAJ/HSP40 HOMOLOG, SUBFAMILY C, MEMBER 5; DNAJC5

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One. 2011;6(11):e26741. doi: 10.1371/journal.pone.0026741. Epub 2011 Nov 4. Citation on PubMed or Free article on PubMed Central
  • Cadieux-Dion M, Andermann E, Lachance-Touchette P, Ansorge O, Meloche C, Barnabe A, Kuzniecky RI, Andermann F, Faught E, Leonberg S, Damiano JA, Berkovic SF, Rouleau GA, Cossette P. Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin Genet. 2013 Jun;83(6):571-5. doi: 10.1111/cge.12020. Epub 2012 Nov 7. Citation on PubMed
  • Carcel-Trullols J, Kovacs AD, Pearce DA. Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta. 2015 Oct;1852(10 Pt B):2242-55. doi: 10.1016/j.bbadis.2015.04.027. Epub 2015 May 8. Citation on PubMed
  • Henderson MX, Wirak GS, Zhang YQ, Dai F, Ginsberg SD, Dolzhanskaya N, Staropoli JF, Nijssen PC, Lam TT, Roth AF, Davis NG, Dawson G, Velinov M, Chandra SS. Neuronal ceroid lipofuscinosis with DNAJC5/CSPalpha mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016 Apr;131(4):621-37. doi: 10.1007/s00401-015-1512-2. Epub 2015 Dec 10. Citation on PubMed or Free article on PubMed Central
  • Tobaben S, Thakur P, Fernandez-Chacon R, Sudhof TC, Rettig J, Stahl B. A trimeric protein complex functions as a synaptic chaperone machine. Neuron. 2001 Sep 27;31(6):987-99. doi: 10.1016/s0896-6273(01)00427-5. Citation on PubMed
  • Velinov M, Dolzhanskaya N, Gonzalez M, Powell E, Konidari I, Hulme W, Staropoli JF, Xin W, Wen GY, Barone R, Coppel SH, Sims K, Brown WT, Zuchner S. Mutations in the gene DNAJC5 cause autosomal dominant Kufs disease in a proportion of cases: study of the Parry family and 8 other families. PLoS One. 2012;7(1):e29729. doi: 10.1371/journal.pone.0029729. Epub 2012 Jan 3. Citation on PubMed or Free article on PubMed Central
DNA helix

Genomic Location

The DNAJC5 gene is found on chromosome 20.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated January 1, 2017
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP