SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
EOGT gene
URL of this page: https://medlineplus.gov/genetics/gene/eogt/

EOGT gene

EGF domain specific O-linked N-acetylglucosamine transferase

Normal Function

The EOGT gene provides instructions for making a protein that modifies certain other proteins by transferring a molecule called N-acetylglucosamine to them. This change, called an O-GlcNAc modification, can affect protein stability and regulate several cellular processes, such as signaling in cells and the first step in the production of proteins from genes (transcription). Little is known about the proteins altered by the EOGT protein or what effect the O-GlcNAc modification has on them. Studies suggest that Notch proteins may be modified by EOGT. Notch proteins stimulate signaling pathways important during the development of several tissues throughout the body, including the bones, heart, liver, muscles, and blood cells, among others.

Health Conditions Related to Genetic Changes

Adams-Oliver syndrome

At least three mutations in the EOGT gene have been found in individuals with Adams-Oliver syndrome. This condition is characterized by areas of missing skin (aplasia cutis congenita), usually on the scalp, and malformations of the hands and feet. The most common EOGT gene mutation involved in this condition, which is found in the Arab population, leads to an abnormally short protein. The other mutations change single protein building blocks (amino acids) in the EOGT protein. Research suggests that the EOGT gene mutations reduce or eliminate the protein's ability to transfer N-acetylglucosamine. It is unknown what effect this impairment has on cells or how it leads to the features of Adams-Oliver syndrome.

More About This Health Condition

Other Names for This Gene

  • AER61
  • AER61 glycosyltransferase
  • AOS4
  • C3orf64
  • EGF domain-specific O-linked N-acetylglucosamine (GlcNAc) transferase
  • EGF domain-specific O-linked N-acetylglucosamine transferase
  • EGF-O-GlcNAc transferase
  • EOGT1
  • EOGT_HUMAN
  • extracellular O-linked N-acetylglucosamine transferase
  • FLJ33770

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of EOGT From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • EGF DOMAIN-SPECIFIC O-LINKED N-ACETYLGLUCOSAMINE TRANSFERASE; EOGT

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Cohen I, Silberstein E, Perez Y, Landau D, Elbedour K, Langer Y, Kadir R, Volodarsky M, Sivan S, Narkis G, Birk OS. Autosomal recessive Adams-Oliver syndrome caused by homozygous mutation in EOGT, encoding an EGF domain-specific O-GlcNAc transferase. Eur J Hum Genet. 2014 Mar;22(3):374-8. doi: 10.1038/ejhg.2013.159. Epub 2013 Jul 17. Citation on PubMed or Free article on PubMed Central
  • Ogawa M, Sawaguchi S, Kawai T, Nadano D, Matsuda T, Yagi H, Kato K, Furukawa K, Okajima T. Impaired O-linked N-acetylglucosaminylation in the endoplasmic reticulum by mutated epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine transferase found in Adams-Oliver syndrome. J Biol Chem. 2015 Jan 23;290(4):2137-49. doi: 10.1074/jbc.M114.598821. Epub 2014 Dec 8. Citation on PubMed or Free article on PubMed Central
  • Sakaidani Y, Ichiyanagi N, Saito C, Nomura T, Ito M, Nishio Y, Nadano D, Matsuda T, Furukawa K, Okajima T. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem Biophys Res Commun. 2012 Mar 2;419(1):14-9. doi: 10.1016/j.bbrc.2012.01.098. Epub 2012 Jan 28. Citation on PubMed
  • Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E, Murakami K, Nadano D, Matsuda T, Furukawa K, Okajima T. O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat Commun. 2011 Dec 13;2:583. doi: 10.1038/ncomms1591. Citation on PubMed
  • Shaheen R, Aglan M, Keppler-Noreuil K, Faqeih E, Ansari S, Horton K, Ashour A, Zaki MS, Al-Zahrani F, Cueto-Gonzalez AM, Abdel-Salam G, Temtamy S, Alkuraya FS. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet. 2013 Apr 4;92(4):598-604. doi: 10.1016/j.ajhg.2013.02.012. Epub 2013 Mar 21. Citation on PubMed or Free article on PubMed Central
DNA helix

Genomic Location

The EOGT gene is found on chromosome 3.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated November 1, 2015
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP