SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
GPHN gene
URL of this page: https://medlineplus.gov/genetics/gene/gphn/

GPHN gene

gephyrin

Normal Function

The GPHN gene provides instructions for making a protein called gephyrin, which has two major functions in the body: the protein aids in the formation (biosynthesis) of a molecule called molybdenum cofactor, and it also plays a role in communication between nerve cells (neurons).

Gephyrin performs the final two steps in molybdenum cofactor biosynthesis. Molybdenum cofactor, which contains the element molybdenum, is essential to the function of several enzymes called sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and mitochondrial amidoxime reducing component (mARC). These enzymes help break down (metabolize) different substances in the body, some of which are toxic if not metabolized.

Gephyrin also plays an important role in neurons. Communication between neurons depends on chemicals called neurotransmitters. To relay signals, a neuron releases neurotransmitters, which attach to receptor proteins on neighboring neurons. Gephyrin anchors certain receptor proteins to the correct location in neurons so that the receptors can receive the signals relayed by neurotransmitters.

Health Conditions Related to Genetic Changes

Molybdenum cofactor deficiency

GPHN gene mutations cause a disorder called molybdenum cofactor deficiency. This disorder is characterized by seizures that begin early in life and brain dysfunction that worsens over time (encephalopathy); the condition is usually fatal by early childhood. At least two mutations in the GPHN gene have been found to cause a form of the disorder designated type C or complementation group C. This is the rarest form of the condition, affecting only a small number of individuals.

The GPHN gene mutations involved in molybdenum cofactor deficiency likely reduce or eliminate the function of gephyrin. The known mutations impair gephyrin's ability to perform one or both of the final two steps of molybdenum cofactor biosynthesis. Without the cofactor, the metabolic enzymes that rely on it cannot function.

The resulting loss of enzyme activity leads to buildup of certain chemicals, including sulfite, S-sulfocysteine, xanthine, and hypoxanthine, and low levels of another chemical called uric acid. (Testing for these chemicals can help in the diagnosis of this condition.) Sulfite, which is normally broken down by sulfite oxidase, is toxic, especially to the brain. Researchers suggest that damage caused by the abnormally high levels of sulfite (and possibly other chemicals) leads to encephalopathy, seizures, and the other features of molybdenum cofactor deficiency.

More About This Health Condition

Other Names for This Gene

  • GEPH
  • gephyrin isoform 1
  • gephyrin isoform 2
  • GPH
  • GPHRYN
  • HKPX1
  • KIAA1385
  • MOCODC

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of GPHN From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • GEPHYRIN; GPHN

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Belaidi AA, Schwarz G. Metal insertion into the molybdenum cofactor: product-substrate channelling demonstrates the functional origin of domain fusion in gephyrin. Biochem J. 2013 Feb 15;450(1):149-57. doi: 10.1042/BJ20121078. Citation on PubMed
  • Mendel RR. The molybdenum cofactor. J Biol Chem. 2013 May 10;288(19):13165-72. doi: 10.1074/jbc.R113.455311. Epub 2013 Mar 28. Citation on PubMed or Free article on PubMed Central
  • Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR, Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 2001 Jan;68(1):208-13. doi: 10.1086/316941. Epub 2000 Nov 28. Citation on PubMed or Free article on PubMed Central
  • Reiss J, Lenz U, Aquaviva-Bourdain C, Joriot-Chekaf S, Mention-Mulliez K, Holder-Espinasse M. A GPHN point mutation leading to molybdenum cofactor deficiency. Clin Genet. 2011 Dec;80(6):598-9. doi: 10.1111/j.1399-0004.2011.01709.x. No abstract available. Citation on PubMed
  • Saiyed T, Paarmann I, Schmitt B, Haeger S, Sola M, Schmalzing G, Weissenhorn W, Betz H. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J Biol Chem. 2007 Feb 23;282(8):5625-32. doi: 10.1074/jbc.M610290200. Epub 2006 Dec 20. Citation on PubMed
DNA helix

Genomic Location

The GPHN gene is found on chromosome 14.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP