Health Topics
Normal Function
The HLA-DRB1 gene provides instructions for making a protein that plays a critical role in the immune system. The HLA-DRB1 gene is part of a family of genes called the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish between the body's own proteins and the proteins made by foreign invaders such as viruses and bacteria.
The HLA complex is the human version of the major histocompatibility complex (MHC), a gene family that occurs in many species. The HLA-DRB1 gene belongs to a group of MHC genes called MHC class II. MHC class II genes provide instructions for making proteins that are present on the surface of certain immune system cells. These proteins attach to protein fragments (peptides) outside the cell. MHC class II proteins display these peptides to the immune system. If the immune system recognizes the peptides as foreign, it triggers a response to attack the invading viruses or bacteria.
The protein produced from the HLA-DRB1 gene, called the beta chain, attaches (binds) to another protein called the alpha chain, which is produced from the HLA-DRA gene. Together, they form a functional protein complex called the HLA-DR antigen-binding heterodimer. This complex displays foreign peptides to the immune system to trigger an immune response.
The wide variety within MHC class II genes allows the immune system to react to a range of foreign invaders. Researchers have identified hundreds of different versions of the HLA-DRB1 gene, each of which is given a particular number (such as HLA-DRB1*04:01).
Health Conditions Related to Genetic Changes
Alopecia areata
MedlinePlus Genetics provides information about Alopecia areata
More About This Health ConditionAutoimmune Addison disease
Certain versions of the HLA-DRB1 gene have been linked to an increased risk of developing an autoimmune disorder called autoimmune Addison disease. Autoimmune disorders occur when the immune system malfunctions and attacks the body's own tissues and organs.
Normally, the immune system responds only to proteins made by foreign invaders, not to the body's own proteins. In people with autoimmune Addison disease, however, an immune response is triggered by a protein made by the adrenal glands, which are small, hormone-producing glands that are located on top of each kidney. In about 85 percent of people with autoimmune Addison disease, the trigger protein is 21-hydroxylase. 21-hydroxylase plays a key role in producing a variety of hormones that regulate many essential functions in the body. The prolonged immune attack triggered by 21-hydroxylase damages the outer layer of the adrenal glands, preventing hormone production. A shortage of adrenal hormones (adrenal insufficiency) disrupts several normal functions in the body, leading to the diverse features of autoimmune Addison disease. These include include extreme tiredness (fatigue); nausea; low blood pressure (hypotension); and abnormally dark areas of skin (hyperpigmentation), especially in regions that experience a lot of friction such as the armpits, elbows, and knuckles.
A particular version of the HLA-DRB1 gene called HLA-DRB1*04:04 is the most well-known risk factor for developing autoimmune Addison disease; however, it is not clear how HLA-DRB1*04:04 and other versions of the HLA-DRB1 gene are involved in the inappropriate immune response that causes autoimmune Addison disease.
More About This Health ConditionCrohn's disease
MedlinePlus Genetics provides information about Crohn's disease
More About This Health ConditionGraves' disease
MedlinePlus Genetics provides information about Graves' disease
More About This Health ConditionHashimoto's disease
MedlinePlus Genetics provides information about Hashimoto's disease
More About This Health ConditionIdiopathic inflammatory myopathy
MedlinePlus Genetics provides information about Idiopathic inflammatory myopathy
More About This Health ConditionIdiopathic pulmonary fibrosis
MedlinePlus Genetics provides information about Idiopathic pulmonary fibrosis
More About This Health ConditionJuvenile idiopathic arthritis
MedlinePlus Genetics provides information about Juvenile idiopathic arthritis
More About This Health ConditionLyme disease
MedlinePlus Genetics provides information about Lyme disease
More About This Health ConditionMultiple sclerosis
Versions of the HLA-DRB1 gene have been associated with an increased risk of developing multiple sclerosis. This condition affects the brain and spinal cord (central nervous system), causing muscle weakness, poor coordination, numbness, and a variety of other health problems. One version of the HLA-DRB1 gene, called HLA-DRB1*15:01, is strongly linked to a high risk of developing multiple sclerosis.
Because the HLA-DRB1 gene is involved in the immune response, changes in the gene might lead to the autoimmune response and inflammation that damage the nerves and cause the signs and symptoms of multiple sclerosis. However, it is unclear exactly what role different versions of the HLA-DRB1 gene play in the development of multiple sclerosis. A combination of genetic and environmental factors is likely involved in this condition.
More About This Health ConditionNarcolepsy
MedlinePlus Genetics provides information about Narcolepsy
More About This Health ConditionPsoriatic arthritis
MedlinePlus Genetics provides information about Psoriatic arthritis
More About This Health ConditionRheumatoid arthritis
Several versions of the HLA-DRB1 gene are associated with a person's risk of developing rheumatoid arthritis. This disease causes chronic inflammation that primarily affects the joints. HLA-DRB1 is one of several genes in the HLA complex that have been associated with rheumatoid arthritis; variations of this gene are the most significant known genetic risk factor for developing this disease.
The versions of the HLA-DRB1 gene, HLA-DRB1*04 and HLA-DRB1*01, are strongly linked to a high risk of developing rheumatoid arthritis. These versions of the gene lead to the production of beta chains that often contain a specific sequence of protein building blocks (amino acids) known as the shared epitope. These variants alter the part of the protein that binds to viral or bacterial peptides. This binding normally triggers the immune response that attacks foreign invaders. Changes in the beta chain caused by the shared epitope make the protein more likely to bind to the body's own proteins, resulting in an abnormal immune system response.
While changes in the HLA-DRB1 gene can influence the development of rheumatoid arthritis, many other genetic and environmental factors also contribute to a person's overall risk of developing this condition.
A few versions of the HLA-DRB1 gene appear to decrease the risk of developing rheumatoid arthritis. It is unclear why these particular changes may prevent the development of this condition.
More About This Health ConditionType 1 diabetes
Certain versions of the HLA-DRB1 gene and other HLA genes affect the risk of developing type 1 diabetes. Type 1 diabetes is characterized by high levels of blood glucose, also called blood sugar, due to a shortage of the hormone insulin. Type 1 diabetes is caused by autoimmune damage to insulin-producing cells in the pancreas.
The risk of developing type 1 diabetes is highly influenced by two specific combinations of the HLA-DRB1 gene and other HLA genes called HLA-DQA1 and HLA-DQB1. Combinations of HLA gene variants are called HLA haplotypes. One haplotype, written as DRB1*03:01-DQA1*05:01-DQB1*02, is called DR3. The other haplotype, written as DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*02, is called DR4. The people who have the highest risk of developing type 1 diabetes have one copy of the DR3 haplotype and one copy of the DR4 haplotype in each cell. Other HLA haplotypes mildly increase the risk of type 1 diabetes, while some haplotypes seem to protect people from developing this condition. Variations in other genes and environmental factors are also thought to affect the risk of developing type 1 diabetes.
More About This Health ConditionAutoimmune disorders
Certain versions of the HLA-DRB1 gene have been associated with many other autoimmune disorders, including pemphigus and sarcoidosis. Pemphigus is a condition that causes severe blistering of the skin and mucous membranes, such as the moist lining of the mouth. Sarcoidosis is a disorder in which inflammation occurs in many organs and tissues of the body.
It is unclear how the different versions of the HLA-DRB1 gene influence the risk of developing these autoimmune disorders. These disorders typically result from a combination of multiple environmental and genetic factors. Changes in other HLA and non-HLA genes also likely contribute to the risk of developing these complex conditions.
Other Names for This Gene
- HLA class II histocompatibility antigen, DR-1 beta chain
- HLA-DR1B
- HLA-DRB
- human leucocyte antigen DRB1
- lymphocyte antigen DRB1
- major histocompatibility complex, class II, DR beta 1 precursor
- MHC class II antigen
- MHC class II HLA-DR beta 1 chain
- MHC class II HLA-DR-beta cell surface glycoprotein
Additional Information & Resources
Tests Listed in the Genetic Testing Registry
Scientific Articles on PubMed
Catalog of Genes and Diseases from OMIM
References
- Alcina A, Abad-Grau Mdel M, Fedetz M, Izquierdo G, Lucas M, Fernandez O, Ndagire D, Catala-Rabasa A, Ruiz A, Gayan J, Delgado C, Arnal C, Matesanz F. Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One. 2012;7(1):e29819. doi: 10.1371/journal.pone.0029819. Epub 2012 Jan 13. Citation on PubMed or Free article on PubMed Central
- Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, Yu L, Miao D, Erlich HA, Fain PR, Barriga KJ, Norris JM, Rewers MJ, Eisenbarth GS. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14074-9. doi: 10.1073/pnas.0606349103. Epub 2006 Sep 11. Citation on PubMed or Free article on PubMed Central
- Chinoy H, Lamb JA, Ollier WE, Cooper RG. An update on the immunogenetics of idiopathic inflammatory myopathies: major histocompatibility complex and beyond. Curr Opin Rheumatol. 2009 Nov;21(6):588-93. doi: 10.1097/BOR.0b013e3283315a22. Citation on PubMed
- Gombos Z, Hermann R, Kiviniemi M, Nejentsev S, Reimand K, Fadeyev V, Peterson P, Uibo R, Ilonen J. Analysis of extended human leukocyte antigen haplotype association with Addison's disease in three populations. Eur J Endocrinol. 2007 Dec;157(6):757-61. doi: 10.1530/EJE-07-0290. Citation on PubMed
- Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CE, Iranzo A, Santamaria J, Peraita Adrados R, Vicario JL, Overeem S, Arnulf I, Theodorou I, Jennum P, Knudsen S, Bassetti C, Mathis J, Lecendreux M, Mayer G, Geisler P, Beneto A, Petit B, Pfister C, Burki JV, Didelot G, Billiard M, Ercilla G, Verduijn W, Claas FH, Vollenweider P, Waeber G, Waterworth DM, Mooser V, Heinzer R, Beckmann JS, Bergmann S, Tafti M. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet. 2010 Sep;42(9):786-9. doi: 10.1038/ng.647. Epub 2010 Aug 15. Citation on PubMed
- Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep. 2011 Dec;11(6):533-42. doi: 10.1007/s11892-011-0223-x. Citation on PubMed or Free article on PubMed Central
- Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022 Jan;44(1):47-62. doi: 10.1007/s00281-022-00912-0. Epub 2022 Jan 27. Citation on PubMed
- Prahalad S, Glass DN. A comprehensive review of the genetics of juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2008 Jul 21;6:11. doi: 10.1186/1546-0096-6-11. Citation on PubMed or Free article on PubMed Central
- Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, Alfredsson L, Padyukov L, Klareskog L, Worthington J, Siminovitch KA, Bae SC, Plenge RM, Gregersen PK, de Bakker PI. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012 Jan 29;44(3):291-6. doi: 10.1038/ng.1076. Citation on PubMed or Free article on PubMed Central
- Rottembourg D, Deal C, Lambert M, Mallone R, Carel JC, Lacroix A, Caillat-Zucman S, le Deist F. 21-Hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison's disease. J Autoimmun. 2010 Dec;35(4):309-15. doi: 10.1016/j.jaut.2010.07.001. Epub 2010 Aug 3. Citation on PubMed
- Skinningsrud B, Lie BA, Lavant E, Carlson JA, Erlich H, Akselsen HE, Gervin K, Wolff AB, Erichsen MM, Lovas K, Husebye ES, Undlien DE. Multiple loci in the HLA complex are associated with Addison's disease. J Clin Endocrinol Metab. 2011 Oct;96(10):E1703-8. doi: 10.1210/jc.2011-0645. Epub 2011 Aug 3. Citation on PubMed
- Steck AK, Rewers MJ. Genetics of type 1 diabetes. Clin Chem. 2011 Feb;57(2):176-85. doi: 10.1373/clinchem.2010.148221. Epub 2011 Jan 4. Citation on PubMed or Free article on PubMed Central
- Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol. 2013 Mar;9(3):141-53. doi: 10.1038/nrrheum.2012.237. Epub 2013 Feb 5. Citation on PubMed or Free article on PubMed Central
- Yu L, Brewer KW, Gates S, Wu A, Wang T, Babu SR, Gottlieb PA, Freed BM, Noble J, Erlich HA, Rewers MJ, Eisenbarth GS. DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison's disease. J Clin Endocrinol Metab. 1999 Jan;84(1):328-35. doi: 10.1210/jcem.84.1.5414. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.