SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
HNF4A gene
URL of this page: https://medlineplus.gov/genetics/gene/hnf4a/

HNF4A gene

hepatocyte nuclear factor 4 alpha

Normal Function

The HNF4A gene provides instructions for making a protein called hepatocyte nuclear factor-4 alpha (HNF-4α). This protein plays an important role in the function of certain tissues and organs in the body. The HNF-4α protein acts as a transcription factor, which means it attaches (binds) to specific regions of DNA and helps control the activity of particular genes.

The HNF-4α protein controls genes that are especially important for development and function of beta cells in the pancreas. Beta cells produce and release (secrete) the hormone insulin. Insulin helps regulate blood sugar levels by controlling how much sugar (in the form of glucose) is passed from the bloodstream into cells to be used as energy. The HNF-4α protein also controls genes involved in normal liver functions.

The structure of the HNF-4α protein includes several important regions. One of the regions, called the dimerization domain, is critical for protein interactions. This region allows molecules of HNF-4α to interact with each other, creating a two-protein unit (dimer) that functions as a transcription factor. Another region, known as the DNA binding domain, binds to specific areas of DNA, allowing the dimer to control gene activity.

Health Conditions Related to Genetic Changes

Maturity-onset diabetes of the young

Mutations in the HNF4A gene cause maturity-onset diabetes of the young (MODY), which is a group of conditions characterized by abnormally high blood sugar levels. MODY usually begins before age 30. HNF4A gene mutations cause a type called HNF4A-MODY (also known as MODY1). Often babies with this condition are heavier than average when they are born, and they may have unusually low blood sugar levels. Symptoms of high blood sugar, which usually begin in childhood or early adulthood, include frequent urination (polyuria), excessive thirst (polydipsia), fatigue, blurred vision, weight loss, and recurrent skin infections. Over time, uncontrolled high blood sugar can lead to eye and kidney problems.

HNF4A gene mutations result in production of an altered HNF-4α protein that is unable to function normally. Some changes prevent the HNF-4α protein from forming dimers; others prevent the attachment of additional proteins that aid in transcription; still others prevent the transcription factor from attaching to DNA to control gene activity. These changes interrupt transcription, altering gene activity in cells. As a result, beta cell development and function are impaired. The cells are less able than normal to produce insulin in response to sugar in the blood, which means blood sugar cannot be controlled. Elevated blood sugar results in the signs and symptoms of MODY.

More About This Health Condition

Congenital hyperinsulinism

MedlinePlus Genetics provides information about Congenital hyperinsulinism

More About This Health Condition

Other Names for This Gene

  • HEPATOCYTE NUCLEAR FACTOR 4-ALPHA
  • HNF4-ALPHA
  • HNF4A gene
  • NR2A1
  • Nuclear Receptor Subfamily 2, Group A, Member 1
  • TCF14
  • TRANSCRIPTION FACTOR 14, HEPATIC NUCLEAR FACTOR

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of HNF4A From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • HEPATOCYTE NUCLEAR FACTOR 4-ALPHA; HNF4A

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Rha GB, Wu G, Chi YI. Probing the effect of MODY mutations near the co-activator-binding pocket of HNF4alpha. Biosci Rep. 2011 Oct;31(5):411-9. doi: 10.1042/BSR20110013. Citation on PubMed
  • Singh P, Tung SP, Han EH, Lee IK, Chi YI. Dimerization defective MODY mutations of hepatocyte nuclear factor 4alpha. Mutat Res. 2019 Mar;814:1-6. doi: 10.1016/j.mrfmmm.2019.01.002. Epub 2019 Jan 9. Citation on PubMed
  • Yamagata K. Roles of HNF1alpha and HNF4alpha in pancreatic beta-cells: lessons from a monogenic form of diabetes (MODY). Vitam Horm. 2014;95:407-23. doi: 10.1016/B978-0-12-800174-5.00016-8. Citation on PubMed
DNA helix

Genomic Location

The HNF4A gene is found on chromosome 20.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated July 1, 2020
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP