SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
HPD gene
URL of this page: https://medlineplus.gov/genetics/gene/hpd/

HPD gene

4-hydroxyphenylpyruvate dioxygenase

Normal Function

The HPD gene provides instructions for making an enzyme called 4-hydroxyphenylpyruvate dioxygenase. This enzyme is abundant in the liver, and smaller amounts are found in the kidneys. It is second in a series of five enzymes that work to break down the amino acid tyrosine, a protein building block found in many foods. Specifically, 4-hydroxyphenylpyruvate dioxygenase converts a tyrosine byproduct called 4-hydroxyphenylpyruvate to homogentisic acid. Continuing the process, homogentisic acid is further broken down and ultimately smaller molecules are produced that are either excreted by the kidneys or used to produce energy or make other substances in the body.

Health Conditions Related to Genetic Changes

Tyrosinemia

Researchers have identified at least six HPD gene mutations that cause tyrosinemia type III. This condition is characterized by neurological problems such as intellectual disability, seizures, and periodic loss of balance and coordination (intermittent ataxia). Some of the mutations that cause this condition change single amino acids in the 4-hydroxyphenylpyruvate dioxygenase enzyme. Other mutations lead to the production of an unusually small enzyme. As a result of these mutations, the activity of the 4-hydroxyphenylpyruvate dioxygenase enzyme is unusually low or absent. As a result, the enzyme cannot perform its role in the breakdown of tyrosine, so 4-hydroxyphenylpyruvate is converted to toxic compounds instead of homogentisic acid. As these toxic compounds builds up in cells, they can impair function and eventually cause cell death. Cells in the nervous system are particularly sensitive to this toxic accumulation. Nerve cell damage and death likely lead to the characteristic features of tyrosinemia type III.

More About This Health Condition

Other disorders

At least two HPD gene mutations have been found to cause a rare condition called hawkinsinuria. In infants, this condition is characterized by a failure to gain weight and grow at the expected rate (failure to thrive) and abnormally high acid levels in the blood (acidosis). The HPD gene mutations that cause hawkinsinuria result in decreased enzyme activity so that 4-hydroxyphenylpyruvate is not efficiently converted to homogentisic acid. Instead, some 4-hydroxyphenylpyruvate forms an unusual sulfur-containing amino acid called hawkinsin. It remains unclear how the production of hawkinsin leads to the features of hawkinsinuria.

Other Names for This Gene

  • 4-HPPD
  • 4HPPD
  • GLOD3
  • HPPD_HUMAN
  • P-hydroxyphenylpyruvate hydroxylase
  • P-hydroxyphenylpyruvate oxidase
  • PPD

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of HPD From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • HAWKINSINURIA; HWKS
  • 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE; HPD

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Aarenstrup L, Falch AM, Jakobsen KK, Neve S, Henriksen L LO, Tommerup N, Leffers H, Kristiansen K. Expression and post-translational modification of human 4-hydroxy-phenylpyruvate dioxygenase. Cell Biol Int. 2002;26(7):615-25. doi: 10.1006/cbir.2002.0896. Citation on PubMed
  • Brownlee JM, Heinz B, Bates J, Moran GR. Product analysis and inhibition studies of a causative Asn to Ser variant of 4-hydroxyphenylpyruvate dioxygenase suggest a simple route to the treatment of Hawkinsinuria. Biochemistry. 2010 Aug 24;49(33):7218-26. doi: 10.1021/bi1008112. Citation on PubMed
  • Ellaway CJ, Holme E, Standing S, Preece MA, Green A, Ploechl E, Ugarte M, Trefz FK, Leonard JV. Outcome of tyrosinaemia type III. J Inherit Metab Dis. 2001 Dec;24(8):824-32. doi: 10.1023/a:1013936107064. Citation on PubMed
  • Heylen E, Scherer G, Vincent MF, Marie S, Fischer J, Nassogne MC. Tyrosinemia Type III detected via neonatal screening: management and outcome. Mol Genet Metab. 2012 Nov;107(3):605-7. doi: 10.1016/j.ymgme.2012.09.002. Epub 2012 Sep 7. Citation on PubMed
  • Ruetschi U, Cerone R, Perez-Cerda C, Schiaffino MC, Standing S, Ugarte M, Holme E. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet. 2000 Jun;106(6):654-62. doi: 10.1007/s004390000307. Citation on PubMed
  • Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, Milovac T, Boneh A, Scott CR, Danks DM, Endo F. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab. 2000 Nov;71(3):506-10. doi: 10.1006/mgme.2000.3085. Citation on PubMed
DNA helix

Genomic Location

The HPD gene is found on chromosome 12.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated August 1, 2015
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP