SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
KRT10 gene
URL of this page: https://medlineplus.gov/genetics/gene/krt10/

KRT10 gene

keratin 10

Normal Function

The KRT10 gene provides instructions for making a protein called keratin 10. Keratins are a group of tough, fibrous proteins that form the structural framework of cells called keratinocytes that make up the skin, hair, and nails. Keratin 10 is produced in keratinocytes in the outer layer of the skin (the epidermis).

In the fluid-filled space inside these cells (the cytoplasm), the keratin 10 protein partners with a similar protein, keratin 1 (produced from the KRT1 gene), to form molecules called keratin intermediate filaments. These filaments assemble into strong networks that provide strength and resiliency to the skin and protect it from being damaged by friction and other everyday physical stresses.

Health Conditions Related to Genetic Changes

Epidermolytic hyperkeratosis

Dozens of mutations in the KRT10 gene have been found in people with epidermolytic hyperkeratosis. This condition is characterized by red, blistering skin at an early age and thick skin (hyperkeratosis) later in life. People with KRT10 gene mutations typically have NPS-type epidermolytic hyperkeratosis, which features thick skin on many parts of the body but not the palms of the hands or soles of the feet.

Most KRT10 gene mutations associated with epidermolytic hyperkeratosis change a single protein building block (amino acid) in the keratin 10 protein. These amino acid changes commonly occur in regions of the protein that play a role in intermediate filament formation. The mutations alter the keratin 10 protein and seem to affect how intermediate filaments interact with each other to form networks. The altered proteins still form intermediate filaments, but the intermediate filament networks are disorganized and do not function normally. Without a strong network, skin cells become fragile and are easily damaged, which can lead to blistering in response to friction or mild trauma. It is unclear how these mutations cause the overgrowth of keratinocytes that results in hyperkeratotic skin.

More About This Health Condition

Ichthyosis with confetti

Mutations in the KRT10 gene can cause another skin disorder known as ichthyosis with confetti (also called congenital reticular ichthyosiform erythroderma), which is characterized by red, scaly skin all over the body with small patches of normal skin that look like confetti. The patches of normal skin increase in number and size with age. The KRT10 gene mutations involved in this condition, which are initially found in every cell of the body, alter the genetic sequence that is used as a blueprint for protein production, leading to production of abnormal keratin 10 protein. The abnormal protein includes a region at the end with an excess of the amino acid arginine; this arginine-rich region is not found in the normal keratin 10 protein. Researchers believe that this abnormal amino acid sequence directs the protein into the nucleus of the cell, where it cannot form the strong network of intermediate filaments. Loss of this network disrupts the outer layer of skin, contributing to the development of red, scaly skin.

In some abnormal cells, the mutated gene corrects itself through a complex process by which genetic material is exchanged between chromosomes. As a result, normal keratin 10 protein is produced and remains in the cytoplasm. The cell becomes normal and, as it continues to grow and divide, forms patches of normal skin in people with ichthyosis with confetti.

More About This Health Condition

Other disorders

Cyclic ichthyosis with epidermolytic hyperkeratosis is another skin disorder caused by mutations in the KRT10 gene. This condition is similar to epidermolytic hyperkeratosis (described above), but the skin changes disappear for short periods, and then recur. The recurrent skin changes can last for weeks or months.

Other Names for This Gene

  • CK-10
  • CK10
  • cytokeratin 10
  • K10
  • K1C10_HUMAN
  • keratin 10, type I
  • keratin, type I cytoskeletal 10
  • keratin-10

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of KRT10 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • KERATIN 10, TYPE I; KRT10
  • ICHTHYOSIS, ANNULAR EPIDERMOLYTIC, 1; AEI1

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Chamcheu JC, Siddiqui IA, Syed DN, Adhami VM, Liovic M, Mukhtar H. Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys. 2011 Apr 15;508(2):123-37. doi: 10.1016/j.abb.2010.12.019. Epub 2010 Dec 19. Citation on PubMed or Free article on PubMed Central
  • Chipev CC, Yang JM, DiGiovanna JJ, Steinert PM, Marekov L, Compton JG, Bale SJ. Preferential sites in keratin 10 that are mutated in epidermolytic hyperkeratosis. Am J Hum Genet. 1994 Feb;54(2):179-90. Citation on PubMed or Free article on PubMed Central
  • Choate KA, Lu Y, Zhou J, Choi M, Elias PM, Farhi A, Nelson-Williams C, Crumrine D, Williams ML, Nopper AJ, Bree A, Milstone LM, Lifton RP. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science. 2010 Oct 1;330(6000):94-7. doi: 10.1126/science.1192280. Epub 2010 Aug 26. Citation on PubMed or Free article on PubMed Central
  • DiGiovanna JJ, Bale SJ. Clinical heterogeneity in epidermolytic hyperkeratosis. Arch Dermatol. 1994 Aug;130(8):1026-35. Citation on PubMed
  • Huber M, Scaletta C, Benathan M, Frenk E, Greenhalgh DA, Rothnagel JA, Roop DR, Hohl D. Abnormal keratin 1 and 10 cytoskeleton in cultured keratinocytes from epidermolytic hyperkeratosis caused by keratin 10 mutations. J Invest Dermatol. 1994 May;102(5):691-4. doi: 10.1111/1523-1747.ep12374270. Citation on PubMed
  • Rothnagel JA, Dominey AM, Dempsey LD, Longley MA, Greenhalgh DA, Gagne TA, Huber M, Frenk E, Hohl D, Roop DR. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science. 1992 Aug 21;257(5073):1128-30. doi: 10.1126/science.257.5073.1128. Citation on PubMed
DNA helix

Genomic Location

The KRT10 gene is found on chromosome 17.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated February 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP