SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
MITF gene
URL of this page: https://medlineplus.gov/genetics/gene/mitf/

MITF gene

melanocyte inducing transcription factor

Normal Function

The MITF gene provides instructions for making a protein called melanocyte inducing transcription factor. This protein plays a role in the development, survival, and function of certain types of cells. To carry out this role, the protein attaches to specific areas of DNA and helps control the activity of particular genes. On the basis of this action, the protein is called a transcription factor.

Melanocyte inducing transcription factor helps control the development and function of pigment-producing cells called melanocytes. Within these cells, this protein controls production of the pigment melanin, which contributes to hair, eye, and skin color. Melanocytes are also found in the inner ear and play an important role in hearing. Additionally, melanocyte inducing transcription factor regulates the development of specialized cells in the eye called retinal pigment epithelial cells. These cells nourish the retina, the part of the eye that detects light and color. Some research indicates that melanocyte inducing transcription factor also regulates the development of cells that break down and remove bone (osteoclasts) and cells that play a role in allergic reactions (mast cells).

The structure of melanocyte inducing transcription factor includes three critically important regions. Two of the regions, called the helix-loop-helix motif and the leucine-zipper motif, are critical for protein interactions. These motifs allow molecules of melanocyte inducing transcription factor to interact with each other or with other proteins that have a similar structure, creating a two-protein unit (dimer) that functions as a transcription factor. The other region, known as the basic motif, binds to specific areas of DNA, allowing the dimer to control gene activity.

Health Conditions Related to Genetic Changes

Melanoma

MITF gene variants (also called mutations) have also been found in people with an aggressive form of skin cancer called melanoma. Most of these variants are somatic, meaning that they occur during a person's lifetime and are present only in  cells that give rise to the melanoma. Occasionally the variant is inherited and is found in every cell of the body (known as a germline variant). 

Some of the MITF gene variants associated with melanoma increase cell growth and division (proliferation) directly. Other variants have an indirect effect, increasing the activity (expression) of other genes involved in proliferation and resulting in the abnormal cell growth that occurs in melanoma.

More About This Health Condition

Tietz syndrome

MITF gene variants have been identified in people with Tietz syndrome, which is characterized by profound hearing loss from birth, fair skin, and light-colored hair. Researchers suggest that Tietz syndrome may be a severe form of Waardenburg syndrome (described below).

The MITF gene variants that cause Tietz syndrome either delete or change a single protein building block (amino acid) in the basic motif region of the melanocyte inducing transcription factor structure. Dimers incorporating the abnormal melanocyte inducing transcription factor cannot be transported into the cell nucleus to bind with DNA. As a result, most of the dimers are unavailable to bind to DNA, which affects the development of melanocytes and the production of melanin. The resulting reduction or absence of melanocytes in the inner ear leads to hearing loss.  Decreased melanin production (hypopigmentation) accounts for the light skin and hair color that are characteristic of Tietz syndrome.

More About This Health Condition

Waardenburg syndrome

Variants in the MITF gene have been identified in people with Waardenburg syndrome type II, a disorder that can cause hearing loss and changes in coloring (pigmentation) of the hair, skin, and eyes. Some MITF gene variants change the amino acids used to make  melanocyte inducing transcription factor, which alters the helix-loop-helix or leucine-zipper motif. Other variants result in an abnormally small version of the protein. Researchers believe that both types of variant disrupt the formation of dimers. Although some dimers are produced, the amount is insufficient for full development of melanocytes. As a result, there is a shortage of melanocytes in certain areas of the skin, hair, eyes, and inner ear.  This shortage leads to hearing loss and the patchy loss of pigmentation associated with Waardenburg syndrome.

More About This Health Condition

Other Names for This Gene

  • homolog of mouse microphthalmia
  • melanogenesis associated transcription factor
  • microphthalmia-associated transcription factor
  • MITF_HUMAN
  • WS2A

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of MITF From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • MICROPHTHALMIA-ASSOCIATED TRANSCRIPTION FACTOR; MITF
  • MELANOMA, CUTANEOUS MALIGNANT, SUSCEPTIBILITY TO, 8; CMM8

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Amiel J, Watkin PM, Tassabehji M, Read AP, Winter RM. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol. 1998 Jan;7(1):17-20. Citation on PubMed
  • Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, Goossens M. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 2000 Aug 12;9(13):1907-17. doi: 10.1093/hmg/9.13.1907. Citation on PubMed
  • Grill C, Bergsteinsdottir K, Ogmundsdottir MH, Pogenberg V, Schepsky A, Wilmanns M, Pingault V, Steingrimsson E. MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function. Hum Mol Genet. 2013 Nov 1;22(21):4357-67. doi: 10.1093/hmg/ddt285. Epub 2013 Jun 20. Citation on PubMed or Free article on PubMed Central
  • Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci. 2020 Aug 25;21(17):6129. doi: 10.3390/ijms21176129. Citation on PubMed
  • Izumi K, Kohta T, Kimura Y, Ishida S, Takahashi T, Ishiko A, Kosaki K. Tietz syndrome: unique phenotype specific to mutations of MITF nuclear localization signal. Clin Genet. 2008 Jul;74(1):93-5. doi: 10.1111/j.1399-0004.2008.01010.x. Epub 2008 May 28. No abstract available. Citation on PubMed
  • Leger S, Balguerie X, Goldenberg A, Drouin-Garraud V, Cabot A, Amstutz-Montadert I, Young P, Joly P, Bodereau V, Holder-Espinasse M, Jamieson RV, Krause A, Chen H, Baumann C, Nunes L, Dollfus H, Goossens M, Pingault V. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes. Eur J Hum Genet. 2012 May;20(5):584-7. doi: 10.1038/ejhg.2011.234. Epub 2012 Jan 18. Citation on PubMed or Free article on PubMed Central
  • Murakami H, Arnheiter H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 2005 Aug;18(4):265-77. doi: 10.1111/j.1600-0749.2005.00234.x. Citation on PubMed or Free article on PubMed Central
  • Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000 Jul;107(1):1-6. doi: 10.1007/s004390000328. Citation on PubMed
  • Read AP. Waardenburg syndrome. Adv Otorhinolaryngol. 2000;56:32-8. doi: 10.1159/000059069. No abstract available. Citation on PubMed
  • Smith SD, Kelley PM, Kenyon JB, Hoover D. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J Med Genet. 2000 Jun;37(6):446-8. doi: 10.1136/jmg.37.6.446. Citation on PubMed or Free article on PubMed Central
  • Tachibana M. Cochlear melanocytes and MITF signaling. J Investig Dermatol Symp Proc. 2001 Nov;6(1):95-8. doi: 10.1046/j.0022-202x.2001.00017.x. Citation on PubMed
  • Tachibana M. MITF: a stream flowing for pigment cells. Pigment Cell Res. 2000 Aug;13(4):230-40. doi: 10.1034/j.1600-0749.2000.130404.x. Citation on PubMed
  • Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene. 2003 May 19;22(20):3035-41. doi: 10.1038/sj.onc.1206443. Citation on PubMed
DNA helix

Genomic Location

The MITF gene is found on chromosome 3.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated August 1, 2016
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP