SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
MT-TE gene
URL of this page: https://medlineplus.gov/genetics/gene/mt-te/

MT-TE gene

mitochondrially encoded tRNA glutamic acid

Normal Function

The MT-TE gene provides instructions for making a molecule called a transfer RNA (tRNA), which is a chemical cousin of DNA. Transfer RNAs help assemble protein building blocks (amino acids) into functioning proteins. The MT-TE gene provides instructions for making a specific form of tRNA that is designated as tRNAGlu. During protein assembly, this molecule attaches to the amino acid glutamic acid (Glu) and inserts it into the appropriate locations in the growing protein.

The tRNAGlu molecule is present only in cellular compartments called mitochondria. These structures convert energy from food into a form that cells can use. Through a process called oxidative phosphorylation, mitochondria use oxygen, simple sugars, and fatty acids to create adenosine triphosphate (ATP), the cell's main energy source. The tRNAGlu molecule is involved in the assembly of proteins that carry out oxidative phosphorylation.

In certain cells in the pancreas, called beta cells, mitochondria also play a role in controlling the amount of sugar (glucose) in the bloodstream. In response to high glucose levels, mitochondria help trigger the release of a hormone called insulin. Insulin regulates blood glucose levels by controlling how much glucose is passed from the blood into cells to be converted into energy.

Health Conditions Related to Genetic Changes

Maternally inherited diabetes and deafness

A mutation in the MT-TE gene has been found in a small number of people with maternally inherited diabetes and deafness (MIDD). People with this condition have diabetes and sometimes hearing loss, particularly of high tones. Affected individuals may also have muscle weakness (myopathy) and problems with their eyes, heart, or kidneys. The mutation involved in this condition replaces the DNA building block (nucleotide) thymine with the nucleotide cytosine at position 14709 (written as T14709C). This mutation likely impairs the ability of mitochondria to help trigger insulin release. In affected individuals, diabetes results when the beta cells do not produce enough insulin to regulate blood glucose effectively. Researchers have not determined how the T14709C mutation leads to hearing loss or the other features of MIDD.

More About This Health Condition

Other disorders

Mutations in the MT-TE gene are also involved in infantile transient mitochondrial myopathy (also known as benign COX deficiency myopathy). This rare condition occurs within the first few months of life and causes severe muscle weakness, poor muscle tone (hypotonia), and buildup of a chemical called lactic acid in the body (lactic acidosis). Affected infants often have difficulty feeding and need support from a machine to help them breathe. The signs and symptoms improve after several months, and most affected individuals show no symptoms of the condition by age 2 or 3.

The mutations involved in infantile transient mitochondrial myopathy change single nucleotides in mitochondrial DNA. Specifically, the nucleotide thymine at position 14674 is replaced by the nucleotide cytosine or guanine (written as T14674C or T14674G, respectively). These mutations impair oxidative phosphorylation. As a result, muscle cells cannot produce enough energy, leading to the muscle problems that affect infants with infantile transient mitochondrial myopathy. It is unknown why only muscles are involved or how affected infants recover from the condition.

Other Names for This Gene

  • MTTE
  • trnE

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of MT-TE From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • MITOCHONDRIAL MYOPATHY, INFANTILE, TRANSIENT; MMIT
  • TRANSFER RNA, MITOCHONDRIAL, GLUTAMIC ACID; MTTE

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Horvath R, Kemp JP, Tuppen HA, Hudson G, Oldfors A, Marie SK, Moslemi AR, Servidei S, Holme E, Shanske S, Kollberg G, Jayakar P, Pyle A, Marks HM, Holinski-Feder E, Scavina M, Walter MC, Coku J, Gunther-Scholz A, Smith PM, McFarland R, Chrzanowska-Lightowlers ZM, Lightowlers RN, Hirano M, Lochmuller H, Taylor RW, Chinnery PF, Tulinius M, DiMauro S. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain. 2009 Nov;132(Pt 11):3165-74. doi: 10.1093/brain/awp221. Epub 2009 Aug 31. Citation on PubMed or Free article on PubMed Central
  • Mezghani N, Mkaouar-Rebai E, Mnif M, Charfi N, Rekik N, Youssef S, Abid M, Fakhfakh F. The heteroplasmic m.14709T>C mutation in the tRNA(Glu) gene in two Tunisian families with mitochondrial diabetes. J Diabetes Complications. 2010 Jul-Aug;24(4):270-7. doi: 10.1016/j.jdiacomp.2009.11.002. Epub 2010 Jan 4. Citation on PubMed
  • Mimaki M, Hatakeyama H, Komaki H, Yokoyama M, Arai H, Kirino Y, Suzuki T, Nishino I, Nonaka I, Goto Y. Reversible infantile respiratory chain deficiency: a clinical and molecular study. Ann Neurol. 2010 Dec;68(6):845-54. doi: 10.1002/ana.22111. Citation on PubMed
  • Rigoli L, Prisco F, Caruso RA, Iafusco D, Ursomanno G, Zuccarello D, Ingenito N, Rigoli M, Barberi I. Association of the T14709C mutation of mitochondrial DNA with maternally inherited diabetes mellitus and/or deafness in an Italian family. Diabet Med. 2001 Apr;18(4):334-6. doi: 10.1046/j.1464-5491.2001.00429-2.x. No abstract available. Citation on PubMed
  • Uusimaa J, Jungbluth H, Fratter C, Crisponi G, Feng L, Zeviani M, Hughes I, Treacy EP, Birks J, Brown GK, Sewry CA, McDermott M, Muntoni F, Poulton J. Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet. 2011 Oct;48(10):660-668. doi: 10.1136/jmg.2011.089995. Citation on PubMed or Free article on PubMed Central
  • Vialettes BH, Paquis-Flucklinger V, Pelissier JF, Bendahan D, Narbonne H, Silvestre-Aillaud P, Montfort MF, Righini-Chossegros M, Pouget J, Cozzone PJ, Desnuelle C. Phenotypic expression of diabetes secondary to a T14709C mutation of mitochondrial DNA. Comparison with MIDD syndrome (A3243G mutation): a case report. Diabetes Care. 1997 Nov;20(11):1731-7. doi: 10.2337/diacare.20.11.1731. Citation on PubMed
DNA helix

Genomic Location

The MT-TE gene is found on mitochondrial DNA.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated October 1, 2012
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP