SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
MT-TK gene
URL of this page: https://medlineplus.gov/genetics/gene/mt-tk/

MT-TK gene

mitochondrially encoded tRNA lysine

Normal Function

The MT-TK gene provides instructions for making a molecule called a transfer RNA (tRNA), which is a chemical cousin of DNA. Transfer RNAs help assemble protein building blocks (amino acids) into full-length, functioning proteins. The MT-TK gene provides instructions for a specific form of tRNA that is designated as tRNALys. During protein assembly, this molecule attaches to a particular amino acid, lysine (Lys), and inserts it into the appropriate locations in the growing protein.

The tRNALys molecule is present in cellular compartments called mitochondria. These structures convert energy from food into a form that cells can use. Through a process called oxidative phosphorylation, mitochondria use oxygen, simple sugars, and fatty acids to create adenosine triphosphate (ATP), the cell's main energy source. The tRNALys molecule is involved in the assembly of proteins that carry out oxidative phosphorylation.

In certain cells in the pancreas, called beta cells, mitochondria also play a role in controlling the amount of sugar (glucose) in the bloodstream. In response to high glucose levels, mitochondria help trigger the release of a hormone called insulin. Insulin regulates blood glucose levels by controlling how much glucose is passed from the blood into cells to be converted into energy.

Health Conditions Related to Genetic Changes

Maternally inherited diabetes and deafness

A mutation in the MT-TK gene has been found in a small number of people with maternally inherited diabetes and deafness (MIDD), which is a condition characterized by diabetes and hearing loss, particularly of high tones. Less commonly, affected individuals have problems with their eyes, muscles, heart, or kidneys. The mutation involved in this condition changes a single DNA building block (nucleotide) in the MT-TK gene; the nucleotide adenine is replaced by the nucleotide guanine at gene position 8296 (written as A8296G). Researchers believe that the A8296G mutation impairs the ability of mitochondria to help trigger insulin release. In affected individuals, diabetes results when the beta cells do not produce enough insulin to regulate blood glucose effectively. Researchers have not determined how the A8296G mutation leads to hearing loss or the other features of MIDD.

More About This Health Condition

Myoclonic epilepsy with ragged-red fibers

Several mutations in the MT-TK gene have been identified in people with myoclonic epilepsy with ragged-red fibers (MERRF). This condition is characterized by muscle twitches (myoclonus), recurrent seizures (epilepsy), abnormal muscle cells known as ragged-red fibers, and other problems with the nervous system. Most of the mutations involved in this condition change single nucleotides in the gene. One mutation causes about 80 percent of all MERRF cases. This genetic change replaces the nucleotide adenine with the nucleotide guanine at gene position 8344 (written as A8344G). The A8344G mutation impairs the ability of mitochondria to make proteins, use oxygen, and produce energy. Researchers have not determined how changes in the MT-TK gene lead to the specific signs and symptoms of MERRF. They continue to investigate the effects of mitochondrial gene mutations in various tissues, particularly in the brain.

A small number of people with a mutation in the MT-TK gene have some features of MERRF and some features of another mitochondrial disorder called mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). These affected individuals are said to have MERRF/MELAS overlap syndrome. Additional signs and symptoms of this syndrome include recurrent severe headaches, muscle weakness (myopathy), difficulty coordinating movements (ataxia), hearing loss, and stroke-like episodes including a loss of consciousness. The mutation in the MT-TK gene that causes MERRF/MELAS overlap syndrome changes a single nucleotide in the gene. Specifically, it replaces the nucleotide thymine with the nucleotide cytosine at gene position 8356 (written as T8356C). It is unclear how this genetic change leads to the signs and symptoms of MERRF/MELAS overlap syndrome.

More About This Health Condition

Leigh syndrome

The A8344G mutation, which is the most common mutation found in people with MERRF (described above), can also cause a progressive brain disorder called Leigh syndrome. Signs and symptoms of this condition usually begin during infancy or early childhood and include vomiting, seizures, delayed development, myopathy, and problems with movement. Heart disease, kidney problems, and difficulty breathing can also occur in people with this disorder. Researchers have not determined why only some people with the A8344G mutation develop the signs and symptoms of Leigh syndrome.


More About This Health Condition

Other disorders

A condition characterized by a weakened heart muscle (cardiomyopathy) and hearing loss is also caused by a mutation in the MT-TK gene. Affected individuals may also have myopathy and ataxia. This mutation (written as G8363A) replaces the nucleotide guanine with the nucleotide adenine at a certain location within the gene. It is unclear how this alteration in the MT-TK gene results in cardiomyopathy, hearing loss, and other symptoms.

Other Names for This Gene

  • mitochondrial tRNA-Lys
  • MTTK
  • trnK

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of MT-TK From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • TRANSFER RNA, MITOCHONDRIAL, LYSINE; MTTK

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Berkovic SF, Shoubridge EA, Andermann F, Andermann E, Carpenter S, Karpati G. Clinical spectrum of mitochondrial DNA mutation at base pair 8344. Lancet. 1991 Aug 17;338(8764):457. doi: 10.1016/0140-6736(91)91090-h. No abstract available. Citation on PubMed
  • Finsterer J, Harbo HF, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schols L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen CM, Zeviani M, Burgunder JM, Gasser T; European Federation of Neurological Sciences. EFNS guidelines on the molecular diagnosis of mitochondrial disorders. Eur J Neurol. 2009 Dec;16(12):1255-64. doi: 10.1111/j.1468-1331.2009.02811.x. Citation on PubMed
  • Kameoka K, Isotani H, Tanaka K, Azukari K, Fujimura Y, Shiota Y, Sasaki E, Majima M, Furukawa K, Haginomori S, Kitaoka H, Ohsawa N. Novel mitochondrial DNA mutation in tRNA(Lys) (8296A-->G) associated with diabetes. Biochem Biophys Res Commun. 1998 Apr 17;245(2):523-7. doi: 10.1006/bbrc.1998.8437. Citation on PubMed
  • Kameoka K, Isotani H, Tanaka K, Kitaoka H, Ohsawa N. Impaired insulin secretion in Japanese diabetic subjects with an A-to-G mutation at nucleotide 8296 of the mitochondrial DNA in tRNA(Lys). Diabetes Care. 1998 Nov;21(11):2034-5. doi: 10.2337/diacare.21.11.2034. No abstract available. Citation on PubMed
  • Lorenzoni PJ, Scola RH, Kay CS, Arndt RC, Silvado CE, Werneck LC. MERRF: Clinical features, muscle biopsy and molecular genetics in Brazilian patients. Mitochondrion. 2011 May;11(3):528-32. doi: 10.1016/j.mito.2011.01.003. Epub 2011 Feb 15. Citation on PubMed
  • Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996 Mar;39(3):343-51. doi: 10.1002/ana.410390311. Citation on PubMed
  • Sano M, Ozawa M, Shiota S, Momose Y, Uchigata M, Goto Y. The T-C(8356) mitochondrial DNA mutation in a Japanese family. J Neurol. 1996 Jun;243(6):441-4. doi: 10.1007/BF00900496. Citation on PubMed
  • Santorelli FM, Mak SC, El-Schahawi M, Casali C, Shanske S, Baram TZ, Madrid RE, DiMauro S. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA(Lys) gene (G8363A). Am J Hum Genet. 1996 May;58(5):933-9. Citation on PubMed or Free article on PubMed Central
  • Serra G, Piccinnu R, Tondi M, Muntoni F, Zeviani M, Mastropaolo C. Clinical and EEG findings in eleven patients affected by mitochondrial encephalomyopathy with MERRF-MELAS overlap. Brain Dev. 1996 May-Jun;18(3):185-91. doi: 10.1016/0387-7604(95)00147-6. Citation on PubMed
  • Silvestri G, Ciafaloni E, Santorelli FM, Shanske S, Servidei S, Graf WD, Sumi M, DiMauro S. Clinical features associated with the A-->G transition at nucleotide 8344 of mtDNA ("MERRF mutation"). Neurology. 1993 Jun;43(6):1200-6. doi: 10.1212/wnl.43.6.1200. Citation on PubMed
  • Zeviani M, Muntoni F, Savarese N, Serra G, Tiranti V, Carrara F, Mariotti C, DiDonato S. A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA(Lys) gene. Eur J Hum Genet. 1993;1(1):80-7. doi: 10.1159/000472390. Citation on PubMed
DNA helix

Genomic Location

The MT-TK gene is found on mitochondrial DNA.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated May 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP