SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
PDGFRA gene
URL of this page: https://medlineplus.gov/genetics/gene/pdgfra/

PDGFRA gene

platelet derived growth factor receptor alpha

Normal Function

The PDGFRA gene provides instructions for making a protein called platelet-derived growth factor receptor alpha (PDGFRA), which is part of a family of proteins called receptor tyrosine kinases (RTKs). Receptor tyrosine kinases transmit signals from the cell surface into the cell through a process called signal transduction. The PDGFRA protein is found in the cell membrane of certain cell types where a specific protein, called platelet-derived growth factor, attaches (binds) to it. This binding turns on (activates) the PDGFRA protein, which then activates other proteins inside the cell by adding a cluster of oxygen and phosphorus atoms (a phosphate group) at specific positions (a process called phosphorylation). This process leads to the activation of a series of proteins in multiple signaling pathways.

The signaling pathways stimulated by the PDGFRA protein control many important cellular processes such as cell growth and division (proliferation) and cell survival. PDGFRA protein signaling is important for the development of many types of cells throughout the body.

Health Conditions Related to Genetic Changes

PDGFRA-associated chronic eosinophilic leukemia

Genetic abnormalities that involve the PDGFRA gene cause a type of blood cell cancer called PDGFRA-associated chronic eosinophilic leukemia. This condition is characterized by an increased number of eosinophils, a type of white blood cell involved in allergic reactions. These genetic abnormalities are somatic mutations, which are mutations acquired during a person's lifetime that are present only in certain cells. The most common of these genetic abnormalities is a deletion of genetic material from chromosome 4 that brings together parts of two genes, FIP1L1 and PDGFRA, creating the FIP1L1-PDGFRA fusion gene. Occasionally, genes other than FIP1L1 are fused with the PDGFRA gene. Mutations that change single DNA building blocks in the PDGFRA gene (point mutations) can also cause this condition, although these mutations are seen very rarely.

The protein produced from the FIP1L1-PDGFRA fusion gene (as well as other PDGFRA fusion genes) has the function of the PDGFRA protein. However, unlike the normal PDGFRA protein, the fusion protein does not require binding of the platelet-derived growth factor protein to be activated. Similarly, point mutations in the PDGFRA gene can result in a PDGFRA protein that is activated without ligand binding. As a result, the signaling pathways are constantly turned on (constitutively activated), which increases the proliferation and survival of cells. When the FIP1L1-PDGFRA fusion gene mutation or point mutations in the PDGFRA gene occur in early blood cells, the growth of eosinophils (and occasionally other blood cells) is poorly controlled, leading to PDGFRA-associated chronic eosinophilic leukemia. It is unclear why eosinophils are preferentially affected by this genetic change.

More About This Health Condition

Gastrointestinal stromal tumor

Mutations in the PDGFRA gene are associated with gastrointestinal stromal tumors (GISTs). GISTs are a type of tumor that occurs in the gastrointestinal tract, most commonly in the stomach or small intestine. The majority of GISTs associated with a mutation in the PDGFRA gene occur in the stomach. In most cases, the genetic changes are acquired during a person's lifetime and are called somatic mutations. Somatic mutations, which lead to sporadic GISTs, are present only in the tumor cells and are not inherited. Less commonly, PDGFRA gene mutations that increase the risk of developing GISTs are inherited from a parent, which can lead to familial GISTs.

PDGFRA gene mutations associated with GISTs create a protein that no longer requires binding of the platelet-derived growth factor protein to be activated. As a result, the PDGFRA protein and the signaling pathways are constitutively activated, which increases cell proliferation and survival, leading to tumor formation.

More About This Health Condition

Other disorders

PDGFRA gene mutations that lead to a constitutively active PDGFRA protein are also associated with inflammatory fibroid polyps, which are small, noncancerous (benign) tumors that form in the gastrointestinal tract. These tumors are made up of fibrous tissue and usually contain cells known to cause inflammation (inflammatory cells). As in GISTs, the constitutively active PDGFRA protein leads to the overgrowth of cells and formation of tumors.

Other Names for This Gene

  • CD140 antigen-like family member A
  • CD140A
  • CD140a antigen
  • GAS9
  • PDGFR-alpha
  • PDGFR2
  • PGFRA_HUMAN
  • platelet-derived growth factor receptor 2
  • platelet-derived growth factor receptor alpha
  • platelet-derived growth factor receptor, alpha polypeptide

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of PDGFRA From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • PLATELET-DERIVED GROWTH FACTOR RECEPTOR, ALPHA; PDGFRA

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Bain BJ. Relationship between idiopathic hypereosinophilic syndrome, eosinophilic leukemia, and systemic mastocytosis. Am J Hematol. 2004 Sep;77(1):82-5. doi: 10.1002/ajh.20088. Citation on PubMed
  • Buitenhuis M, Verhagen LP, Cools J, Coffer PJ. Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Res. 2007 Apr 15;67(8):3759-66. doi: 10.1158/0008-5472.CAN-06-4183. Citation on PubMed
  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003 Mar 27;348(13):1201-14. doi: 10.1056/NEJMoa025217. Citation on PubMed
  • Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M, Serve H, Cross NC, Hochhaus A, Hofmann WK, Berdel WE, Muller-Tidow C, Reiter A, Koschmieder S. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011 Mar 10;117(10):2935-43. doi: 10.1182/blood-2010-05-286757. Epub 2011 Jan 11. Citation on PubMed
  • Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem. 2009 Mar 20;284(12):7719-32. doi: 10.1074/jbc.M807489200. Epub 2009 Jan 14. Citation on PubMed or Free article on PubMed Central
  • Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003 Jan 31;299(5607):708-10. doi: 10.1126/science.1079666. Epub 2003 Jan 9. Citation on PubMed
  • Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y, Kitamura Y. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 2003 Sep;125(3):660-7. doi: 10.1016/s0016-5085(03)01046-1. Citation on PubMed
  • Lasota J, Wang ZF, Sobin LH, Miettinen M. Gain-of-function PDGFRA mutations, earlier reported in gastrointestinal stromal tumors, are common in small intestinal inflammatory fibroid polyps. A study of 60 cases. Mod Pathol. 2009 Aug;22(8):1049-56. doi: 10.1038/modpathol.2009.62. Epub 2009 May 15. Citation on PubMed
  • Roufosse FE, Goldman M, Cogan E. Hypereosinophilic syndromes. Orphanet J Rare Dis. 2007 Sep 11;2:37. doi: 10.1186/1750-1172-2-37. Citation on PubMed or Free article on PubMed Central
  • Schildhaus HU, Cavlar T, Binot E, Buttner R, Wardelmann E, Merkelbach-Bruse S. Inflammatory fibroid polyps harbour mutations in the platelet-derived growth factor receptor alpha (PDGFRA) gene. J Pathol. 2008 Oct;216(2):176-82. doi: 10.1002/path.2393. Citation on PubMed
DNA helix

Genomic Location

The PDGFRA gene is found on chromosome 4.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated July 13, 2021
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP