SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
SLC25A4 gene
URL of this page: https://medlineplus.gov/genetics/gene/slc25a4/

SLC25A4 gene

solute carrier family 25 member 4

Normal Function

The SLC25A4 gene provides the instructions for making a protein called adenine nucleotide translocase type 1 (ANT1). ANT1 functions in mitochondria, which are structures within cells that convert the energy from food into a form that cells can use. This process, called oxidative phosphorylation, converts adenosine diphosphate (ADP) into adenosine triphosphate (ATP), the cell's main energy source. ANT1 forms a channel in the inner membrane of mitochondria. This channel allows ADP into mitochondria and ATP out of mitochondria to be used as energy for the cell. ANT1 may also be a part of another structure in the inner membrane called the mitochondrial permeability transition pore. This structure allows various molecules to pass into mitochondria and is thought to play a role in the self-destruction (apoptosis) of the cell.

Health Conditions Related to Genetic Changes

Progressive external ophthalmoplegia

At least five mutations in the SLC25A4 gene have been reported to cause an eye condition called progressive external ophthalmoplegia. This disorder weakens the muscles that control eye movement and causes the eyelids to droop (ptosis). When caused by SLC25A4 gene mutations, progressive external ophthalmoplegia is inherited in an autosomal dominant pattern, which means one copy of the gene in each cell is mutated. These mutations impair the movement of ADP and ATP into and out of mitochondria; however, it is not well understood what role these changes play in the cause of the condition.

Mitochondria each contain a small amount of DNA, known as mitochondrial DNA (mtDNA), which is essential for the normal function of these structures. Although the mechanism is unclear, mutations in the SLC25A4 gene result in large deletions of genetic material from mtDNA in muscle tissue. Researchers have not determined how deletions of mtDNA lead to the specific signs and symptoms of progressive external ophthalmoplegia, although the features of the condition are probably related to impaired oxidative phosphorylation. It has been suggested that eye muscles are commonly affected by mitochondrial defects because they are especially dependent on oxidative phosphorylation for energy.

More About This Health Condition

Other disorders

Mutations in the SLC25A4 gene can also cause a disorder characterized by myopathy and hypertrophic cardiomyopathy. Myopathy is weakness of the muscles used for movement, and cardiomyopathy is a thickening of the heart muscle that forces the heart to work harder to pump blood. This disorder is inherited in an autosomal recessive pattern, which means both copies of the SLC25A4 gene in each cell are mutated. The mutations associated with this disorder prevent production of ANT1 channels. As in progressive external ophthalmoplegia (described above), the mutations result in deletions of mtDNA, although the mechanism is unclear. Researchers are unsure how deletions of mtDNA lead to myopathy and hypertrophic cardiomyopathy.

Other Names for This Gene

  • AAC1
  • adenine nucleotide translocator 1 (skeletal muscle)
  • ADP,ATP carrier protein 1
  • ADP,ATP carrier protein, heart/skeletal muscle
  • ADP/ATP translocase 1
  • ADT1_HUMAN
  • ANT
  • ANT 1
  • ANT1
  • heart/skeletal muscle ATP/ADP translocator
  • PEO2
  • PEO3
  • solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4
  • T1

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of SLC25A4 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • SOLUTE CARRIER FAMILY 25 (MITOCHONDRIAL CARRIER, ADENINE NUCLEOTIDE TRANSLOCATOR), MEMBER 4; SLC25A4

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Echaniz-Laguna A, Chassagne M, Ceresuela J, Rouvet I, Padet S, Acquaviva C, Nataf S, Vinzio S, Bozon D, Mousson de Camaret B. Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J Med Genet. 2012 Feb;49(2):146-50. doi: 10.1136/jmedgenet-2011-100504. Epub 2011 Dec 20. Citation on PubMed
  • Fontanesi F, Palmieri L, Scarcia P, Lodi T, Donnini C, Limongelli A, Tiranti V, Zeviani M, Ferrero I, Viola AM. Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum Mol Genet. 2004 May 1;13(9):923-34. doi: 10.1093/hmg/ddh108. Epub 2004 Mar 11. Citation on PubMed
  • Kawamata H, Tiranti V, Magrane J, Chinopoulos C, Manfredi G. adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria. Hum Mol Genet. 2011 Aug 1;20(15):2964-74. doi: 10.1093/hmg/ddr200. Epub 2011 May 17. Citation on PubMed or Free article on PubMed Central
  • Palmieri L, Alberio S, Pisano I, Lodi T, Meznaric-Petrusa M, Zidar J, Santoro A, Scarcia P, Fontanesi F, Lamantea E, Ferrero I, Zeviani M. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet. 2005 Oct 15;14(20):3079-88. doi: 10.1093/hmg/ddi341. Epub 2005 Sep 9. Citation on PubMed
  • Sharer JD. The adenine nucleotide translocase type 1 (ANT1): a new factor in mitochondrial disease. IUBMB Life. 2005 Sep;57(9):607-14. doi: 10.1080/15216540500217735. Citation on PubMed
  • Strauss KA, DuBiner L, Simon M, Zaragoza M, Sengupta PP, Li P, Narula N, Dreike S, Platt J, Procaccio V, Ortiz-Gonzalez XR, Puffenberger EG, Kelley RI, Morton DH, Narula J, Wallace DC. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3453-8. doi: 10.1073/pnas.1300690110. Epub 2013 Feb 11. Citation on PubMed or Free article on PubMed Central
  • Van Goethem G, Martin JJ, Van Broeckhoven C. Progressive external ophthalmoplegia characterized by multiple deletions of mitochondrial DNA: unraveling the pathogenesis of human mitochondrial DNA instability and the initiation of a genetic classification. Neuromolecular Med. 2003;3(3):129-46. doi: 10.1385/NMM:3:3:129. Citation on PubMed
  • Yu Wai Man CY, Chinnery PF, Griffiths PG. Extraocular muscles have fundamentally distinct properties that make them selectively vulnerable to certain disorders. Neuromuscul Disord. 2005 Jan;15(1):17-23. doi: 10.1016/j.nmd.2004.10.002. Epub 2004 Nov 26. Citation on PubMed
DNA helix

Genomic Location

The SLC25A4 gene is found on chromosome 4.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated May 1, 2016
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP