SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
SLC35A2 gene
URL of this page: https://medlineplus.gov/genetics/gene/slc35a2/

SLC35A2 gene

solute carrier family 35 member A2

Normal Function

The SLC35A2 gene provides instructions for making an enzyme called UDP-galactose translocator (UGT). This enzyme is involved in a process called glycosylation. During this process, complex chains of sugar molecules (oligosaccharides) are added to proteins and fats (lipids). Glycosylation modifies proteins and lipids so they can fully perform their functions. The UGT enzyme transfers a simple sugar called galactose to growing oligosaccharides at a particular step in the formation of the sugar chain. Once the correct number of sugar molecules are linked together, the oligosaccharide is attached to a protein or lipid.

Two versions of the enzyme, known as UGT1 and UGT2, are produced from the SLC35A2 gene. These enzymes differ in only a few protein building blocks (amino acids) and can function together or separately in different areas of the cell.

Health Conditions Related to Genetic Changes

SLC35A2-congenital disorder of glycosylation

At least nine mutations in the SLC35A2 gene have been found to cause SLC35A2-congenital disorder of glycosylation (SLC35A2-CDG). SLC35A2-CDG is an inherited condition that causes neurological problems (such as seizures, developmental delay, and intellectual disability) and abnormalities affecting other body systems.

SLC35A2 gene mutations change single amino acids in the UGT enzyme or disrupt the way the gene's instructions are used to make the enzyme. These mutations can affect one or both versions of the enzyme and lead to the production of an abnormal enzyme with reduced or no activity. Without a properly functioning enzyme, glycosylation cannot proceed normally, and oligosaccharides are incomplete. The signs and symptoms of SLC35A2-CDG are likely due to impaired glycosylation of proteins and fats that are needed for the normal function of various organs and tissues.

In some individuals with SLC35A2-CDG, glycosylation becomes normal later in childhood. The cause of this apparent correction is unknown. The restoration of glycosylation in these individuals, however, does not seem to improve the signs and symptoms of SLC35A2-CDG.

More About This Health Condition

Other Names for This Gene

  • solute carrier family 35 (UDP-galactose transporter), member 2
  • solute carrier family 35 (UDP-galactose transporter), member A2
  • UDP-Gal-Tr
  • UDP-galactose translocator
  • UGALT
  • UGAT
  • UGT
  • UGT1
  • UGT2
  • UGTL

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of SLC35A2 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • SOLUTE CARRIER FAMILY 35 (UDP-GALACTOSE TRANSPORTER), MEMBER 2; SLC35A2

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Dorre K, Olczak M, Wada Y, Sosicka P, Gruneberg M, Reunert J, Kurlemann G, Fiedler B, Biskup S, Hortnagel K, Rust S, Marquardt T. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis. 2015 Sep;38(5):931-40. doi: 10.1007/s10545-015-9828-6. Epub 2015 Mar 17. Citation on PubMed
  • Kimizu T, Takahashi Y, Oboshi T, Horino A, Koike T, Yoshitomi S, Mori T, Yamaguchi T, Ikeda H, Okamoto N, Nakashima M, Saitsu H, Kato M, Matsumoto N, Imai K. A case of early onset epileptic encephalopathy with de novo mutation in SLC35A2: Clinical features and treatment for epilepsy. Brain Dev. 2017 Mar;39(3):256-260. doi: 10.1016/j.braindev.2016.09.009. Epub 2016 Oct 12. Citation on PubMed
  • Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K, Mizumoto S, Kato M, Okamoto N, Iai M, Kondo Y, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Hayasaka K, Sugahara K, Yuasa I, Wada Y, Matsumoto N, Saitsu H. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat. 2013 Dec;34(12):1708-14. doi: 10.1002/humu.22446. Epub 2013 Oct 15. Citation on PubMed
  • Ng BG, Buckingham KJ, Raymond K, Kircher M, Turner EH, He M, Smith JD, Eroshkin A, Szybowska M, Losfeld ME, Chong JX, Kozenko M, Li C, Patterson MC, Gilbert RD, Nickerson DA, Shendure J, Bamshad MJ; University of Washington Center for Mendelian Genomics; Freeze HH. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet. 2013 Apr 4;92(4):632-6. doi: 10.1016/j.ajhg.2013.03.012. Citation on PubMed or Free article on PubMed Central
DNA helix

Genomic Location

The SLC35A2 gene is found on the X chromosome.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated August 1, 2018
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP