SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
TBXAS1 gene
URL of this page: https://medlineplus.gov/genetics/gene/tbxas1/

TBXAS1 gene

thromboxane A synthase 1

Normal Function

The TBXAS1 gene provides instructions for making an enzyme called thromboxane A synthase 1. This enzyme acts as part of a chemical pathway called the arachidonic acid cascade. Through this multistep pathway, a molecule called arachidonic acid is processed to produce several molecules with diverse functions in the body. As part of this pathway, thromboxane A synthase 1 converts a molecule called prostaglandin H2 into another molecule called thromboxane A2. Thromboxane A2 is involved in normal blood clotting (hemostasis), playing critical roles in the narrowing of blood vessels (vasoconstriction) to slow blood flow and the clumping (aggregation) of blood cells called platelets at the site of an injury.

Studies suggest that the activity of thromboxane A synthase 1 may also be important for bone remodeling, which is a normal process in which old bone is removed and new bone is created to replace it, and for the production of red blood cells in bone marrow.

Health Conditions Related to Genetic Changes

Ghosal hematodiaphyseal dysplasia

At least four mutations in the TBXAS1 gene have been found to cause Ghosal hematodiaphyseal dysplasia. This condition is characterized by abnormally thick bones and a shortage of red blood cells (anemia) caused by scarring (fibrosis) of the bone marrow.

Each of the known mutations changes a single protein building block (amino acid) in thromboxane A synthase 1, which severely reduces the activity of the enzyme. A shortage of this enzyme's activity prevents the conversion of prostaglandin H2 to thromboxane A2. As a result, cells have more prostaglandin H2 than usual. Prostaglandin H2 is converted into several related molecules, including prostaglandin E2, which is thought to be involved in bone remodeling and in controlling the growth of immature red blood cells. Researchers speculate that an increase in prostaglandin E2 levels resulting from excess prostaglandin H2 contributes to the bone abnormalities and anemia that occur in people with Ghosal hematodiaphyseal dysplasia. However, the exact mechanism by which a lack of thromboxane A synthase 1 activity leads to the particular features of this condition is still unclear.

A shortage of thromboxane A synthase 1 activity also reduces the level of thromboxane A2 in cells. Although this molecule plays a critical role in hemostasis, people with Ghosal hematodiaphyseal dysplasia do not appear to have problems with blood clotting. Researchers suspect that other molecules involved in vasoconstriction and platelet aggregation may be able to compensate for the lack of thromboxane A2 in these individuals.

More About This Health Condition

Other Names for This Gene

  • BDPLT14
  • CYP5
  • CYP5A1
  • cytochrome P450 5A1
  • cytochrome P450, family 5, subfamily A, polypeptide 1
  • GHOSAL
  • platelet, cytochrome P450, subfamily V
  • THAS
  • THAS_HUMAN
  • thromboxane A synthase 1 (platelet)
  • thromboxane A synthase 1 (platelet, cytochrome P450, family 5, subfamily A)
  • thromboxane-A synthase
  • TS
  • TXA synthase
  • TXAS
  • TXS

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of TBXAS1 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • THROMBOXANE A SYNTHASE 1; TBXAS1

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Genevieve D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, Picard C, Vignon-Savoye C, Bader-Meunier B, Blanche S, de Vernejoul MC, Legeai-Mallet L, Fischer AM, Le Merrer M, Dreyfus M, Gaussem P, Munnich A, Cormier-Daire V. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008 Mar;40(3):284-6. doi: 10.1038/ng.2007.66. Epub 2008 Feb 10. Citation on PubMed
  • Isidor B, Dagoneau N, Huber C, Genevieve D, Bader-Meunier B, Blanche S, Picard C, De Vernejoul MC, Munnich A, Le Merrer M, Cormier-Daire V. A gene responsible for Ghosal hemato-diaphyseal dysplasia maps to chromosome 7q33-34. Hum Genet. 2007 Apr;121(2):269-73. doi: 10.1007/s00439-006-0311-1. Epub 2007 Jan 3. Citation on PubMed
  • Miyata A, Yokoyama C, Ihara H, Bandoh S, Takeda O, Takahashi E, Tanabe T. Characterization of the human gene (TBXAS1) encoding thromboxane synthase. Eur J Biochem. 1994 Sep 1;224(2):273-9. doi: 10.1111/j.1432-1033.1994.00273.x. Citation on PubMed
DNA helix

Genomic Location

The TBXAS1 gene is found on chromosome 7.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP