Health Topics
Normal Function
The TET2 gene provides instructions for making a protein whose function is unknown. Based on the function of similar proteins, researchers believe the TET2 protein is involved in regulating the process of transcription, which is the first step in protein production. Although this protein is found throughout the body, it may play a particularly important role in the production of blood cells from hematopoietic stem cells. These stem cells are located within the bone marrow and have the potential to develop into red blood cells, white blood cells, and platelets. The TET2 protein appears to act as a tumor suppressor, which is a protein that prevents cells from growing and dividing in an uncontrolled way.
Health Conditions Related to Genetic Changes
Essential thrombocythemia
Some gene mutations are acquired during a person's lifetime and are present only in certain cells. These changes, which are called somatic mutations, are not inherited. Somatic mutations in the TET2 gene have been identified in a small number of people with essential thrombocythemia, which is a condition characterized by high numbers of platelets in the blood. Platelets are the blood cells involved in blood clotting.
TET2 gene mutations alter the TET2 protein in different ways; however, all of them appear to result in a nonfunctional protein. The role these mutations play in the development of essential thrombocythemia is unknown.
More About This Health ConditionPolycythemia vera
Somatic mutations in the TET2 gene are associated with polycythemia vera, a disorder characterized by uncontrolled blood cell production. These mutations are thought to result in a nonfunctional protein. Mutations in this gene have been found in approximately 16 percent of people with polycythemia vera. It is unclear what role these mutations play in the development of polycythemia vera.
More About This Health ConditionPrimary myelofibrosis
Somatic mutations in the TET2 gene are associated with primary myelofibrosis. This condition is characterized by scar tissue (fibrosis) in the bone marrow, the tissue that produces blood cells. It is unclear what role the TET2 gene mutations play in the development of primary myelofibrosis.
More About This Health ConditionSystemic mastocytosis
MedlinePlus Genetics provides information about Systemic mastocytosis
More About This Health ConditionOther disorders
Somatic TET2 gene mutations are also associated with certain types of cancer of blood-forming cells (leukemia) and a disease of the blood and bone marrow called myelodysplastic syndrome. These mutations are thought to result in a nonfunctional TET2 protein. A loss of TET2 protein in hematopoietic stem cells may lead to uncontrolled growth and division of these cells. Researchers are working to determine exactly what role TET2 gene mutations play in the development of bone marrow disorders.
Other Names for This Gene
- FLJ20032
- KIAA1546
- MGC125715
- probable methylcytosine dioxygenase TET2
- probable methylcytosine dioxygenase TET2 isoform a
- probable methylcytosine dioxygenase TET2 isoform b
- tet oncogene family member 2
- TET2_HUMAN
Additional Information & Resources
Tests Listed in the Genetic Testing Registry
Scientific Articles on PubMed
Catalog of Genes and Diseases from OMIM
References
- Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, Huberman K, Thomas S, Dolgalev I, Heguy A, Paietta E, Le Beau MM, Beran M, Tallman MS, Ebert BL, Kantarjian HM, Stone RM, Gilliland DG, Crispino JD, Levine RL. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009 Jul 2;114(1):144-7. doi: 10.1182/blood-2009-03-210039. Epub 2009 May 6. Citation on PubMed or Free article on PubMed Central
- Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W, Haferlach T. Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann Hematol. 2010 Jul;89(7):643-52. doi: 10.1007/s00277-010-0920-6. Epub 2010 Mar 2. Citation on PubMed
- Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009 May 28;360(22):2289-301. doi: 10.1056/NEJMoa0810069. Citation on PubMed
- Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, Stevens-Linders E, van Hoogen P, van Kessel AG, Raymakers RA, Kamping EJ, Verhoef GE, Verburgh E, Hagemeijer A, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009 Jul;41(7):838-42. doi: 10.1038/ng.391. Epub 2009 May 31. Citation on PubMed
- Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, Plo I, Bordessoule D, Chomienne C, Delannoy A, Devidas A, Gardembas-Pain M, Isnard F, Plumelle Y, Bernard O, Vainchenker W, Najman A, Bellanne-Chantelot C; French Group of Familial Myeloproliferative Disorders. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009 Aug 20;114(8):1628-32. doi: 10.1182/blood-2009-01-197525. Epub 2009 Jun 29. Citation on PubMed
- Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, Skoda RC. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010 Mar 11;115(10):2003-7. doi: 10.1182/blood-2009-09-245381. Epub 2010 Jan 8. Citation on PubMed
- Tefferi A, Pardanani A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Gangat N, Finke CM, Schwager S, Mullally A, Li CY, Hanson CA, Mesa R, Bernard O, Delhommeau F, Vainchenker W, Gilliland DG, Levine RL. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009 May;23(5):905-11. doi: 10.1038/leu.2009.47. Epub 2009 Mar 5. Citation on PubMed or Free article on PubMed Central
- Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010 Jun;24(6):1128-38. doi: 10.1038/leu.2010.69. Epub 2010 Apr 29. Citation on PubMed or Free article on PubMed Central
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.