SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
TGFBR1 gene
URL of this page: https://medlineplus.gov/genetics/gene/tgfbr1/

TGFBR1 gene

transforming growth factor beta receptor 1

Normal Function

The TGFBR1 gene provides instructions for making a protein called transforming growth factor-beta (TGF-β) receptor type 1. This receptor transmits signals from the cell surface into the cell through a process called signal transduction. Through this type of signaling, the environment outside the cell affects activities inside the cell such as stimulation of cell growth and division.

To carry out its signaling function, TGF-β receptor type 1 spans the cell membrane, so that one end of the protein projects from the outer surface of the cell (the extracellular domain) and the other end remains inside the cell (the intracellular domain). A protein called TGF-β attaches (binds) to the extracellular domain of TGF-β receptor type 1, which turns on (activates) the receptor and allows it to bind to another receptor on the cell surface. These three proteins form a complex, which triggers signal transduction by activating other proteins in a signaling pathway called the TGF-β pathway.

Signals transmitted by the TGF-β receptor complex trigger various responses by the cell, including the growth and division (proliferation) of cells, the maturation of cells to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis). Because TGF-β receptor type 1 helps prevent cells from growing and dividing too rapidly or in an uncontrolled way, it can suppress the formation of tumors.

Health Conditions Related to Genetic Changes

Loeys-Dietz syndrome

More than 35 mutations in the TGFBR1 gene have been found to cause Loeys-Dietz syndrome type I. Loeys-Dietz syndrome affects connective tissue, which gives structure and support to blood vessels, the skeleton, and other parts of the body. This type of Loeys-Dietz syndrome is characterized by blood vessel abnormalities and skeletal deformities. The TGFBR1 gene mutations that cause Loeys-Dietz syndrome are present in one copy of the gene in each cell. Most of these mutations change single protein building blocks (amino acids) in TGF-β receptor type 1, resulting in a receptor with little or no function. Although the receptor has severely reduced function, TGF-β pathway signaling occurs at an even greater intensity than normal. Researchers speculate that the activity of other proteins in this signaling pathway is increased to compensate for the reduction in TGF-β receptor type 1 activity; however, the exact mechanism responsible for the increase in signaling is unclear. The overactive signaling pathway disrupts development of connective tissue and various body systems and leads to the varied signs and symptoms of Loeys-Dietz syndrome type I.

More About This Health Condition

Familial thoracic aortic aneurysm and dissection

MedlinePlus Genetics provides information about Familial thoracic aortic aneurysm and dissection

More About This Health Condition

Prostate cancer

MedlinePlus Genetics provides information about Prostate cancer

More About This Health Condition

Other cancers

More than 10 mutations in the TGFBR1 gene have been found to increase the risk of developing a form of skin cancer called multiple self-healing squamous epithelioma (MSSE). This condition, also known as Ferguson-Smith disease, is characterized by the formation of multiple invasive skin tumors that grow uncontrollably for a few weeks, but then suddenly shrink and die off, leaving a noncancerous scar.

People with MSSE have a mutation in one copy of the TGFBR1 gene in each cell. An additional mutation in the second copy of the TGFBR1 gene is needed for tumors to form in MSSE. The second mutation, which is called a somatic mutation, is found only in the tumor cells and is not inherited. Unlike TGFBR1 gene mutations that cause Loeys-Dietz syndrome type I (described above), the mutations that cause MSSE prevent the production of any protein at all. A complete lack of functional receptor in certain cells results in a total loss of TGF-β pathway signaling and severely reduced tumor suppression, allowing the skin cancers to form. The mechanism responsible for the spontaneous healing of the multiple skin tumors in MSSE is unknown.

Other Names for This Gene

  • serine/threonine-protein kinase receptor R4
  • TBR-i
  • TBRI
  • TGF-beta receptor type I
  • TGF-beta receptor type-1
  • TGF-beta type I receptor
  • TGFR-1
  • TGFR1_HUMAN
  • transforming growth factor beta receptor I
  • transforming growth factor-beta receptor type I

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of TGFBR1 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • MULTIPLE SELF-HEALING SQUAMOUS EPITHELIOMA, SUSCEPTIBILITY TO; MSSE
  • TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I; TGFBR1

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Cardoso S, Robertson SP, Daniel PB. TGFBR1 mutations associated with Loeys-Dietz syndrome are inactivating. J Recept Signal Transduct Res. 2012 Jun;32(3):150-5. doi: 10.3109/10799893.2012.664553. Epub 2012 Mar 14. Citation on PubMed
  • Goudie DR, D'Alessandro M, Merriman B, Lee H, Szeverenyi I, Avery S, O'Connor BD, Nelson SF, Coats SE, Stewart A, Christie L, Pichert G, Friedel J, Hayes I, Burrows N, Whittaker S, Gerdes AM, Broesby-Olsen S, Ferguson-Smith MA, Verma C, Lunny DP, Reversade B, Lane EB. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1. Nat Genet. 2011 Feb 27;43(4):365-9. doi: 10.1038/ng.780. Citation on PubMed
  • Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006 Aug 24;355(8):788-98. doi: 10.1056/NEJMoa055695. Citation on PubMed
  • Pezzini A, Del Zotto E, Giossi A, Volonghi I, Costa P, Padovani A. Transforming growth factor beta signaling perturbation in the Loeys-Dietz syndrome. Curr Med Chem. 2012;19(3):454-60. doi: 10.2174/092986712803414286. Citation on PubMed
  • Van Hemelrijk C, Renard M, Loeys B. The Loeys-Dietz syndrome: an update for the clinician. Curr Opin Cardiol. 2010 Nov;25(6):546-51. doi: 10.1097/HCO.0b013e32833f0220. Citation on PubMed
DNA helix

Genomic Location

The TGFBR1 gene is found on chromosome 9.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2017
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP