SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
TINF2 gene
URL of this page: https://medlineplus.gov/genetics/gene/tinf2/

TINF2 gene

TERF1 interacting nuclear factor 2

Normal Function

The TINF2 gene provides instructions for making part of the shelterin protein complex. This complex consists of a group of proteins that work together to help maintain structures known as telomeres, which are found at the ends of chromosomes. Telomeres help protect chromosomes from abnormally sticking together or breaking down (degrading).

The shelterin complex helps protect telomeres from the cell's DNA repair process. Without the protection of shelterin, the repair mechanism would sense the chromosome ends as abnormal breaks in the DNA sequence and either attempt to join the ends together or initiate cellular self-destruction (apoptosis).

Health Conditions Related to Genetic Changes

Dyskeratosis congenita

At least 15 mutations in the TINF2 gene have been identified in people with dyskeratosis congenita, including a severe form of this disorder called Revesz syndrome. Dyskeratosis congenita is characterized by changes in skin coloring (pigmentation), white patches inside the mouth (oral leukoplakia), and abnormally formed fingernails and toenails (nail dystrophy). People with dyskeratosis congenita have an increased risk of developing several life-threatening conditions, including cancer and a progressive lung disease called pulmonary fibrosis. Many affected individuals also develop a serious condition called aplastic anemia, also known as bone marrow failure, which occurs when the bone marrow does not produce enough new blood cells.

Most of the TINF2 gene mutations that cause dyskeratosis congenita change single protein building blocks (amino acids) in the TINF2 protein, likely disrupting the function of the protein. The mutations result in dysfunction of the shelterin complex, interfering with its protection of telomeres and leading to reduced telomere length. Shortened telomeres can result in damage to genetic material, causing the cell to stop dividing or to undergo apoptosis.

Cells that divide rapidly are especially vulnerable to the effects of shortened telomeres. As a result, people with dyskeratosis congenita may experience a variety of problems affecting quickly dividing cells in the body such as cells of the nail beds, hair follicles, skin, lining of the mouth (oral mucosa), and bone marrow.

Breakage and instability of chromosomes resulting from inadequate telomere maintenance may lead to genetic changes that allow cells to divide in an uncontrolled way, resulting in the development of cancer in some people with dyskeratosis congenita.

More About This Health Condition

Idiopathic pulmonary fibrosis

MedlinePlus Genetics provides information about Idiopathic pulmonary fibrosis

More About This Health Condition

Other Names for This Gene

  • (TRF1)-interacting nuclear factor 2 variant 1
  • TERF1 (TRF1)-interacting nuclear factor 2
  • TERF1-interacting nuclear factor 2
  • TERF1-interacting nuclear factor 2 isoform 1
  • TERF1-interacting nuclear factor 2 isoform 2
  • TIN2
  • TINF2_HUMAN
  • TRF1-interacting nuclear protein 2

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of TINF2 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • TERF1-INTERACTING NUCLEAR FACTOR 2; TINF2

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013 Jun;6(3):327-37. doi: 10.1586/ehm.13.23. Citation on PubMed
  • Baran I, Nalcaci R, Kocak M. Dyskeratosis congenita: clinical report and review of the literature. Int J Dent Hyg. 2010 Feb;8(1):68-74. doi: 10.1111/j.1601-5037.2009.00364.x. Citation on PubMed
  • Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood. 2008 May 1;111(9):4446-55. doi: 10.1182/blood-2007-08-019729. Epub 2008 Jan 31. Citation on PubMed or Free article on PubMed Central
  • Calado RT. Telomeres and marrow failure. Hematology Am Soc Hematol Educ Program. 2009:338-43. doi: 10.1182/asheducation-2009.1.338. Citation on PubMed
  • Chan SS, Chang S. Defending the end zone: studying the players involved in protecting chromosome ends. FEBS Lett. 2010 Sep 10;584(17):3773-8. doi: 10.1016/j.febslet.2010.06.016. Epub 2010 Jun 19. Citation on PubMed or Free article on PubMed Central
  • Kirwan M, Dokal I. Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta. 2009 Apr;1792(4):371-9. doi: 10.1016/j.bbadis.2009.01.010. Epub 2009 Feb 7. Citation on PubMed or Free article on PubMed Central
  • Nishio N, Kojima S. Recent progress in dyskeratosis congenita. Int J Hematol. 2010 Oct;92(3):419-24. doi: 10.1007/s12185-010-0695-5. Epub 2010 Oct 1. Citation on PubMed
  • Sasa GS, Ribes-Zamora A, Nelson ND, Bertuch AA. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin Genet. 2012 May;81(5):470-8. doi: 10.1111/j.1399-0004.2011.01658.x. Epub 2011 Apr 7. Citation on PubMed or Free article on PubMed Central
  • Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008 Feb;82(2):501-9. doi: 10.1016/j.ajhg.2007.10.004. Epub 2008 Jan 31. Citation on PubMed or Free article on PubMed Central
  • Walne AJ, Dokal I. Advances in the understanding of dyskeratosis congenita. Br J Haematol. 2009 Apr;145(2):164-72. doi: 10.1111/j.1365-2141.2009.07598.x. Epub 2009 Feb 4. Citation on PubMed or Free article on PubMed Central
  • Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood. 2008 Nov 1;112(9):3594-600. doi: 10.1182/blood-2008-05-153445. Epub 2008 Jul 30. Citation on PubMed or Free article on PubMed Central
DNA helix

Genomic Location

The TINF2 gene is found on chromosome 14.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP