Health Topics
Normal Function
The TNNT2 gene provides instructions for making a protein called cardiac troponin T, which is found solely in the heart (cardiac) muscle. Cardiac troponin T is one of three proteins that make up the troponin protein complex in cardiac muscle cells. The troponin complex is part of a structure called the sarcomere, which is the basic unit of muscle contraction. Sarcomeres are made up of thick and thin filaments. The overlapping thick and thin filaments attach (bind) to each other and release, which allows the filaments to move relative to one another so that muscles can contract. The troponin complex, along with calcium, helps regulate contraction of cardiac muscle.
For the heart to beat normally, cardiac muscle must contract and relax in a coordinated way. Cardiac troponin T helps coordinate contraction of the heart muscle. When calcium levels are low, the troponin complex binds to the thin filament in sarcomeres, which blocks the interaction between the thick and thin filaments that is needed for muscle contraction. An increase in calcium levels causes structural changes in the troponin complex, which allows the thick and thin filaments to interact, leading to contraction of the heart muscle.
Health Conditions Related to Genetic Changes
Familial hypertrophic cardiomyopathy
Mutations in the TNNT2 gene can cause familial hypertrophic cardiomyopathy, a condition characterized by thickening (hypertrophy) of the cardiac muscle. TNNT2 gene mutations are found in approximately 5 percent of individuals with this condition. Although some people with hypertrophic cardiomyopathy have no obvious health effects, all affected individuals have an increased risk of heart failure and sudden death.
Most TNNT2 gene mutations in familial hypertrophic cardiomyopathy change single protein building blocks (amino acids) in the cardiac troponin T protein. The altered protein is likely incorporated into the troponin complex, but it may not function properly. However, it is unclear how the gene mutations lead to the features of familial hypertrophic cardiomyopathy.
More About This Health ConditionFamilial dilated cardiomyopathy
Mutations in the TNNT2 gene have been found in people with a heart condition called familial dilated cardiomyopathy. The role TNNT2 gene mutations play in this disorder is unclear. Familial dilated cardiomyopathy is a condition that weakens and enlarges the heart, preventing it from pumping blood efficiently. Familial dilated cardiomyopathy increases the risk of heart failure and premature death.
More About This Health ConditionFamilial restrictive cardiomyopathy
MedlinePlus Genetics provides information about Familial restrictive cardiomyopathy
More About This Health ConditionLeft ventricular noncompaction
Mutations in the TNNT2 gene have been found in people with a heart condition called left ventricular noncompaction. However, the role TNNT2 gene mutations play in this disorder is unclear. Left ventricular noncompaction occurs when the lower left chamber of the heart (left ventricle) does not develop correctly. The heart muscle is weakened and cannot pump blood efficiently, often leading to heart failure. Abnormal heart rhythms (arrhythmias) can also occur in individuals with left ventricular noncompaction.
More About This Health ConditionOther Names for This Gene
- cardiac muscle troponin T
- cTnT
- LVNC6
- RCM3
- TNNT2_HUMAN
- TnTC
- troponin T type 2 (cardiac)
- troponin T, cardiac muscle
- troponin T2, cardiac
Additional Information & Resources
Tests Listed in the Genetic Testing Registry
Scientific Articles on PubMed
Catalog of Genes and Diseases from OMIM
References
- Bashyam MD, Savithri GR, Kumar MS, Narasimhan C, Nallari P. Molecular genetics of familial hypertrophic cardiomyopathy (FHC). J Hum Genet. 2003;48(2):55-64. doi: 10.1007/s100380300007. Citation on PubMed
- Gomes AV, Barnes JA, Harada K, Potter JD. Role of troponin T in disease. Mol Cell Biochem. 2004 Aug;263(1-2):115-29. doi: 10.1023/B:MCBI.0000041853.20588.a0. Citation on PubMed
- Hershberger RE, Pinto JR, Parks SB, Kushner JD, Li D, Ludwigsen S, Cowan J, Morales A, Parvatiyar MS, Potter JD. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ Cardiovasc Genet. 2009 Aug;2(4):306-13. doi: 10.1161/CIRCGENETICS.108.846733. Epub 2009 May 15. Citation on PubMed or Free article on PubMed Central
- Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med. 2008 Mar;5(3):158-68. doi: 10.1038/ncpcardio1110. Epub 2008 Jan 29. Erratum In: Nat Clin Pract Cardiovasc Med. 2008 Nov;5(11):747. Citation on PubMed
- Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008 Jun 3;117(22):2893-901. doi: 10.1161/CIRCULATIONAHA.107.746164. Epub 2008 May 27. Citation on PubMed
- Luedde M, Ehlermann P, Weichenhan D, Will R, Zeller R, Rupp S, Muller A, Steen H, Ivandic BT, Ulmer HE, Kern M, Katus HA, Frey N. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res. 2010 Jun 1;86(3):452-60. doi: 10.1093/cvr/cvq009. Epub 2010 Jan 18. Citation on PubMed
- Marston SB. How do mutations in contractile proteins cause the primary familial cardiomyopathies? J Cardiovasc Transl Res. 2011 Jun;4(3):245-55. doi: 10.1007/s12265-011-9266-2. Epub 2011 Mar 22. Citation on PubMed
- Otten E, Lekanne Dit Deprez RH, Weiss MM, van Slegtenhorst M, Joosten M, van der Smagt JJ, de Jonge N, Kerstjens-Frederikse WS, Roofthooft MT, Balk AH, van den Berg MP, Ruiter JS, van Tintelen JP. Recurrent and founder mutations in the Netherlands: mutation p.K217del in troponin T2, causing dilated cardiomyopathy. Neth Heart J. 2010 Oct;18(10):478-85. doi: 10.1007/BF03091819. Citation on PubMed or Free article on PubMed Central
- Rodriguez JE, McCudden CR, Willis MS. Familial hypertrophic cardiomyopathy: basic concepts and future molecular diagnostics. Clin Biochem. 2009 Jun;42(9):755-65. doi: 10.1016/j.clinbiochem.2009.01.020. Epub 2009 Feb 9. Citation on PubMed
The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.