SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
TNXB gene
URL of this page: https://medlineplus.gov/genetics/gene/tnxb/

TNXB gene

tenascin XB

Normal Function

The TNXB gene provides instructions for making a protein called tenascin-X. This protein plays an important role in organizing and maintaining the structure of tissues that support the body's muscles, joints, organs, and skin (connective tissues). In particular, studies suggest that it helps to regulate the production and assembly of certain types of collagen. Collagens are a family of proteins that strengthen and support connective tissues throughout the body. Tenascin-X is also involved in regulating the structure and stability of elastic fibers, which provide flexibility and stretchiness (elasticity) to connective tissues.

Health Conditions Related to Genetic Changes

Ehlers-Danlos syndrome

Mutations in the TNXB gene cause a very small percentage of all cases of a form of Ehlers-Danlos syndrome called the hypermobile type. Ehlers-Danlos syndrome is a group of disorders that affect the connective tissues that support the skin, bones, blood vessels, and many other organs and tissues. The hypermobile type is characterized by an unusually large range of joint movement (hypermobility). The mutations that cause this form of the disorder occur in one copy of the TNXB gene in each cell. These mutations reduce the amount of functional tenascin-X that cells produce, which decreases the ability of tenascin-X to interact with collagens and elastic fibers. These changes weaken connective tissues in many parts of the body, which results in the signs and symptoms of the hypermobile type of Ehlers-Danlos syndrome.

Some people with a condition called benign joint hypermobility syndrome (BJHS) also make a reduced amount of tenascin-X protein, although no TNXB gene mutations have been identified in these individuals. This condition causes hypermobility and chronic joint pain. The signs and symptoms of benign joint hypermobility syndrome overlap significantly with those of the hypermobile type of Ehlers-Danlos syndrome. Studies suggest that they may be forms of the same condition.

Some people with Ehlers-Danlos syndrome have mutations in two copies of the TNXB gene in each cell. These individuals have a form of the disorder that is often called the classical-like type. Its signs and symptoms are similar to the classical type of Ehlers-Danlos syndrome, including hypermobility and skin that is soft, highly stretchy (elastic), and fragile. However, affected individuals do not have the unusual scarring that is characteristic of that type. Mutations that occur in both copies of the TNXB gene prevent production of any tenascin-X protein. A loss of this protein severely disrupts the organization of collagen fibrils and elastic fibers, which significantly weakens connective tissues.

More About This Health Condition

Other Names for This Gene

  • hexabrachion-like
  • HXBL
  • tenascin XB1
  • tenascin XB2
  • TENX
  • TENX_HUMAN
  • TNX
  • TNXB1
  • TNXB2
  • TNXBS
  • XB
  • XBS

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of TNXB From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • TENASCIN XB; TNXB

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Demirdas S, Dulfer E, Robert L, Kempers M, van Beek D, Micha D, van Engelen BG, Hamel B, Schalkwijk J, Loeys B, Maugeri A, Voermans NC. Recognizing the tenascin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet. 2017 Mar;91(3):411-425. doi: 10.1111/cge.12853. Epub 2016 Nov 4. Citation on PubMed
  • Hendriks AGM, Voermans NC, Schalkwijk J, Hamel BC, van Rossum MM. Well-defined clinical presentation of Ehlers-Danlos syndrome in patients with tenascin-X deficiency: a report of four cases. Clin Dysmorphol. 2012 Jan;21(1):15-18. doi: 10.1097/MCD.0b013e32834c4bb7. Citation on PubMed
  • Lindor NM, Bristow J. Tenascin-X deficiency in autosomal recessive Ehlers-Danlos syndrome. Am J Med Genet A. 2005 May 15;135(1):75-80. doi: 10.1002/ajmg.a.30671. Citation on PubMed
  • Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, Bloom L, Bowen JM, Brady AF, Burrows NP, Castori M, Cohen H, Colombi M, Demirdas S, De Backer J, De Paepe A, Fournel-Gigleux S, Frank M, Ghali N, Giunta C, Grahame R, Hakim A, Jeunemaitre X, Johnson D, Juul-Kristensen B, Kapferer-Seebacher I, Kazkaz H, Kosho T, Lavallee ME, Levy H, Mendoza-Londono R, Pepin M, Pope FM, Reinstein E, Robert L, Rohrbach M, Sanders L, Sobey GJ, Van Damme T, Vandersteen A, van Mourik C, Voermans N, Wheeldon N, Zschocke J, Tinkle B. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):8-26. doi: 10.1002/ajmg.c.31552. Citation on PubMed
  • Schalkwijk J, Zweers MC, Steijlen PM, Dean WB, Taylor G, van Vlijmen IM, van Haren B, Miller WL, Bristow J. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med. 2001 Oct 18;345(16):1167-75. doi: 10.1056/NEJMoa002939. Citation on PubMed
  • Tinkle B, Castori M, Berglund B, Cohen H, Grahame R, Kazkaz H, Levy H. Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome Type III and Ehlers-Danlos syndrome hypermobility type): Clinical description and natural history. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):48-69. doi: 10.1002/ajmg.c.31538. Epub 2017 Feb 1. Citation on PubMed
  • Valcourt U, Alcaraz LB, Exposito JY, Lethias C, Bartholin L. Tenascin-X: beyond the architectural function. Cell Adh Migr. 2015;9(1-2):154-65. doi: 10.4161/19336918.2014.994893. Citation on PubMed or Free article on PubMed Central
  • van Dijk FS, Ghali N, Demirdas S, Baker D. TNXB-Related Classical-Like Ehlers-Danlos Syndrome. 2022 Sep 15. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK584019/ Citation on PubMed
  • Voermans NC, Jenniskens GJ, Hamel BC, Schalkwijk J, Guicheney P, van Engelen BG. Ehlers-Danlos syndrome due to tenascin-X deficiency: muscle weakness and contractures support overlap with collagen VI myopathies. Am J Med Genet A. 2007 Sep 15;143A(18):2215-9. doi: 10.1002/ajmg.a.31899. No abstract available. Citation on PubMed
  • Zweers MC, Bristow J, Steijlen PM, Dean WB, Hamel BC, Otero M, Kucharekova M, Boezeman JB, Schalkwijk J. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet. 2003 Jul;73(1):214-7. doi: 10.1086/376564. No abstract available. Citation on PubMed or Free article on PubMed Central
  • Zweers MC, Dean WB, van Kuppevelt TH, Bristow J, Schalkwijk J. Elastic fiber abnormalities in hypermobility type Ehlers-Danlos syndrome patients with tenascin-X mutations. Clin Genet. 2005 Apr;67(4):330-4. doi: 10.1111/j.1399-0004.2005.00401.x. Citation on PubMed
  • Zweers MC, Hakim AJ, Grahame R, Schalkwijk J. Joint hypermobility syndromes: the pathophysiologic role of tenascin-X gene defects. Arthritis Rheum. 2004 Sep;50(9):2742-9. doi: 10.1002/art.20488. No abstract available. Citation on PubMed
DNA helix

Genomic Location

The TNXB gene is found on chromosome 6.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated November 1, 2017
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP