SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
Español
You Are Here:
Home →
Genetics →
Help Me Understand Genetics →
Gene Therapy and Other Medical Advances →
How does gene therapy work?
URL of this page: https://medlineplus.gov/genetics/understanding/therapy/procedures/

How does gene therapy work?

Gene therapy works by altering the genetic code to recover the functions of critical proteins. Proteins are the workhorses of the cell and the structural basis of the body’s tissues. The instructions for making proteins are carried in a person’s genetic code, and variants (or mutations) in this code can impact the production or function of proteins that may be critical to how the body works. Fixing or compensating for disease-causing genetic changes may recover the role of these important proteins and allow the body to function as expected.

Gene therapy can compensate for genetic alterations in a couple different ways.

  • Gene transfer therapy introduces new genetic material into cells. If an altered gene causes a necessary protein to be faulty or missing, gene transfer therapy can introduce a normal copy of the gene to recover the function of the protein. Alternatively, the therapy can introduce a different gene that provides instructions for a protein that helps the cell function normally, despite the genetic alteration.
  • Genome editing is a newer technique that may potentially be used for gene therapy. Instead of adding new genetic material, genome editing introduces gene-editing tools that can change the existing DNA in the cell. Genome editing technologies allow genetic material to be added, removed, or altered at precise locations in the genome. CRISPR-Cas9 is a well-known type of genome editing.

Genetic material or gene-editing tools that are inserted directly into a cell usually do not function. Instead, a carrier called a vector is genetically engineered to carry and deliver the material. Certain viruses are used as vectors because they can deliver the material by infecting the cell. The viruses are modified so they can't cause disease when used in people. Some types of virus, such as retroviruses, integrate their genetic material (including the new gene) into a chromosome in the human cell. Other viruses, such as adenoviruses, introduce their DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome. Viruses can also deliver the gene-editing tools to the nucleus of the cell.

The vector can be injected or given intravenously (by IV) directly into a specific tissue in the body, where it is taken up by individual cells. Alternately, a sample of the patient's cells can be removed and exposed to the vector in a laboratory setting. The cells containing the vector are then returned to the patient. If the treatment is successful, the new gene delivered by the vector will make a functioning protein or the editing molecules will correct a DNA error and restore protein function.

Gene therapy with viral vectors has been successful, but it does carry some risk. Sometimes the virus triggers a dangerous immune response. In addition, vectors that integrate the genetic material into a chromosome can cause errors that lead to cancer. Researchers are developing newer technologies that can deliver genetic material or gene-editing tools without using viruses. One such technique uses special structures called nanoparticles as vectors to deliver the genetic material or gene-editing components into cells. Nanoparticles are incredibly small structures that have been developed for many uses. For gene therapy, these tiny particles are designed with specific characteristics to target them to particular cell types. Nanoparticles are less likely to cause immune reactions than viral vectors, and they are easier to design and modify for specific purposes.

Researchers continue to work to overcome the many technical challenges of gene therapy. For example, scientists are finding better ways to deliver genes or gene-editing tools and target them to particular cells. They are also working to more precisely control when the treatment is functional in the body.

Scientific journal articles for further reading

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021 Feb 8;6(1):53. doi: 10.1038/s41392-021-00487-6. PMID: 33558455. Free full-text article from PubMed Central: PMC7868676.

Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, Qin Z, Xu Z, Sun W, Liang Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front Genet. 2021 May 12;12:673286. doi: 10.3389/fgene.2021.673286. PubMed: 34054927. Free full-text article from PubMed Central: PMC8149999.


A new gene is inserted directly into a cell. A carrier called a vector is genetically engineered to deliver the gene. An adenovirus introduces the DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.

A new gene is inserted directly into a cell. A carrier called a vector is genetically engineered to deliver the gene. An adenovirus introduces the DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.
Credit: U.S. National Library of Medicine

For more information about how gene therapy works:

The National Human Genome Research Institute (NHGRI) discusses various approaches to gene therapyFrom the National Institutes of Health

The Genetic Science Learning Center at the University of Utah also discusses approaches to gene therapy .

The American Society of Gene and Cell Therapy offers gene therapy basics and an in-depth description of the different types of viral vectors used in gene therapy.

The basics of nanoparticles and their use in medicine are explained in the Ask a Biologist feature from Arizona State University.

Topics in the Gene Therapy and Other Medical Advances chapter

  • What is gene therapy?
  • How does gene therapy work?
  • Is gene therapy safe?
  • What are the ethical issues surrounding gene therapy?
  • Is gene therapy available to treat my disorder?
  • What are CAR T cell therapy, RNA therapy, and other genetic therapies?
  • What are mRNA vaccines and how do they work?

Other chapters in Help Me Understand Genetics

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated February 28, 2022
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP