SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
ACAD9 deficiency
URL of this page: https://medlineplus.gov/genetics/condition/acad9-deficiency/

ACAD9 deficiency

Description

ACAD9 deficiency is a condition that varies in severity and can cause muscle weakness (myopathy), heart problems, and intellectual disability. Nearly all affected individuals have a buildup of a chemical called lactic acid in the body (lactic acidosis). Additional signs and symptoms that affect other body systems occur in rare cases.

Mildly affected individuals with ACAD9 deficiency usually experience nausea and extreme fatigue in response to physical activity (exercise intolerance). People with ACAD9 deficiency who are moderately affected have low muscle tone (hypotonia) and weakness in the muscles used for movement (skeletal muscles). Severely affected individuals have brain dysfunction combined with myopathy (encephalomyopathy); these individuals usually also have an enlarged and weakened heart muscle (hypertrophic cardiomyopathy), which is typically fatal in infancy or childhood.

Individuals with ACAD9 deficiency who survive past early childhood often have intellectual disability and may develop seizures. Rare signs and symptoms of ACAD9 deficiency include movement disorders and problems with liver and kidney function.

Some individuals with ACAD9 deficiency have had improvement in muscle strength and a reduction in lactic acid levels with treatment.

Frequency

The prevalence of ACAD9 deficiency is unknown. At least 25 people with this condition have been described in the scientific literature.

Causes

ACAD9 deficiency is caused by mutations in the ACAD9 gene. This gene provides instructions for making an enzyme that is critical in helping assemble a group of proteins known as complex I. Complex I is found in mitochondria, which are the energy-producing structures inside cells. Complex I is one of several complexes that carry out a multistep process called oxidative phosphorylation, through which cells derive much of their energy.

The ACAD9 enzyme also plays a role in fatty acid oxidation, a multistep process that occurs within mitochondria to break down (metabolize) fats and convert them into energy. The ACAD9 enzyme helps metabolize a certain group of fats called long-chain fatty acids. Fatty acids are a major source of energy for the heart and muscles. During periods without food (fasting), fatty acids are also an important energy source for the liver and other tissues.

Some ACAD9 gene mutations disrupt complex I assembly as well as long-chain fatty acid oxidation, while others affect only complex I assembly. The mutations that affect both of the enzyme's functions tend to be associated with the most severe signs and symptoms of ACAD9 deficiency, such as encephalomyopathy and hypertrophic cardiomyopathy. Although the exact mechanism is unclear, it is likely that cells that are less able to produce energy die off, particularly cells in the brain, skeletal muscle, and other tissues and organs that require a lot of energy. The loss of cells in these tissues is thought to lead to the signs and symptoms of ACAD9 deficiency.

Learn more about the gene associated with ACAD9 deficiency

  • ACAD9

Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

  • Acyl-CoA dehydrogenase 9 deficiency
  • Deficiency of acyl-CoA dehydrogenase family member 9
  • Mitochondrial complex I deficiency due to ACAD9 deficiency

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Acyl-CoA dehydrogenase 9 deficiency From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Isolated complex I deficiency From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Catalog of Genes and Diseases from OMIM

  • MITOCHONDRIAL COMPLEX I DEFICIENCY, NUCLEAR TYPE 20; MC1DN20

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Aintablian HK, Narayanan V, Belnap N, Ramsey K, Grebe TA. An atypical presentation of ACAD9 deficiency: Diagnosis by whole exome sequencing broadens the phenotypic spectrum and alters treatment approach. Mol Genet Metab Rep. 2016 Dec 29;10:38-44. doi: 10.1016/j.ymgmr.2016.12.005. eCollection 2017 Mar. Citation on PubMed or Free article on PubMed Central
  • Collet M, Assouline Z, Bonnet D, Rio M, Iserin F, Sidi D, Goldenberg A, Lardennois C, Metodiev MD, Haberberger B, Haack T, Munnich A, Prokisch H, Rotig A. High incidence and variable clinical outcome of cardiac hypertrophy due to ACAD9 mutations in childhood. Eur J Hum Genet. 2016 Aug;24(8):1112-6. doi: 10.1038/ejhg.2015.264. Epub 2015 Dec 16. Citation on PubMed or Free article on PubMed Central
  • Dewulf JP, Barrea C, Vincent MF, De Laet C, Van Coster R, Seneca S, Marie S, Nassogne MC. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients. Mol Genet Metab. 2016 Jul;118(3):185-189. doi: 10.1016/j.ymgme.2016.05.005. Epub 2016 May 13. Citation on PubMed
  • Gerards M, van den Bosch BJ, Danhauser K, Serre V, van Weeghel M, Wanders RJ, Nicolaes GA, Sluiter W, Schoonderwoerd K, Scholte HR, Prokisch H, Rotig A, de Coo IF, Smeets HJ. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain. 2011 Jan;134(Pt 1):210-9. doi: 10.1093/brain/awq273. Epub 2010 Oct 7. Citation on PubMed
  • Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, Boehm D, Uziel G, Lamantea E, Invernizzi F, Poulton J, Rolinski B, Iuso A, Biskup S, Schmidt T, Mewes HW, Wittig I, Meitinger T, Zeviani M, Prokisch H. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010 Dec;42(12):1131-4. doi: 10.1038/ng.706. Epub 2010 Nov 7. Citation on PubMed
  • Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, Hoefs S, Gloerich J, Kronick J, Hutchin T, Willems P, Rodenburg R, Wanders R, van den Heuvel L, Smeitink J, Vogel RO. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 2010 Sep 8;12(3):283-94. doi: 10.1016/j.cmet.2010.08.002. Citation on PubMed
  • Nouws J, Te Brinke H, Nijtmans LG, Houten SM. ACAD9, a complex I assembly factor with a moonlighting function in fatty acid oxidation deficiencies. Hum Mol Genet. 2014 Mar 1;23(5):1311-9. doi: 10.1093/hmg/ddt521. Epub 2013 Oct 24. Citation on PubMed
  • Schiff M, Haberberger B, Xia C, Mohsen AW, Goetzman ES, Wang Y, Uppala R, Zhang Y, Karunanidhi A, Prabhu D, Alharbi H, Prochownik EV, Haack T, Haberle J, Munnich A, Rotig A, Taylor RW, Nicholls RD, Kim JJ, Prokisch H, Vockley J. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum Mol Genet. 2015 Jun 1;24(11):3238-47. doi: 10.1093/hmg/ddv074. Epub 2015 Feb 26. Citation on PubMed or Free article on PubMed Central
  • Schrank B, Schoser B, Klopstock T, Schneiderat P, Horvath R, Abicht A, Holinski-Feder E, Augustis S. Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency. Neuromuscul Disord. 2017 May;27(5):473-476. doi: 10.1016/j.nmd.2017.02.005. Epub 2017 Feb 14. Citation on PubMed
Genetic Counseling

Related Health Topics

  • Genetic Disorders
  • Mitochondrial Diseases

MEDICAL ENCYCLOPEDIA

  • Genetics
  • Hypertrophic cardiomyopathy

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated April 1, 2017
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP