SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Camurati-Engelmann disease
URL of this page: https://medlineplus.gov/genetics/condition/camurati-engelmann-disease/

Camurati-Engelmann disease

Description

Camurati-Engelmann disease is a skeletal condition that is characterized by abnormally thick bones (hyperostosis) in the arms, legs, and skull.

The thick limb bones can lead to bone pain and muscle weakness in the arms and legs and cause individuals with Camurati-Engelmann disease to tire quickly. Bone pain ranges from mild to severe and can increase with stress, activity, or cold weather. Leg weakness can make it difficult to stand up from a seated position and some affected individuals develop a waddling or unsteady walk. Additional limb abnormalities include joint deformities (contractures), knock knees, and flat feet (pes planus). Swelling and redness (erythema) of the limbs and an abnormal curvature of the spine can also occur.

Individuals with Camurati-Engelmann disease may have an unusually thick skull, which can lead to an abnormally large head (macrocephaly) and lower jaw (mandible), a prominent forehead (frontal bossing), and bulging eyes with shallow eye sockets (ocular proptosis). These changes to the head and face become more prominent with age and are most noticeable in affected adults. In about a quarter of individuals with Camurati-Engelmann disease, the thickened skull increases pressure on the brain or compresses the spinal cord, which can cause a variety of neurological problems, including headaches, hearing loss, vision problems, dizziness (vertigo), ringing in the ears (tinnitus), and facial paralysis.

The degree of hyperostosis varies among individuals with Camurati-Engelmann disease as does the age at which they experience their first symptoms.

Other, rare features of Camurati-Engelmann disease include abnormally long limbs in proportion to height, a decrease in muscle mass and body fat, delayed teething (dentition), frequent cavities, delayed puberty, a shortage of red blood cells (anemia), an enlarged liver and spleen (hepatosplenomegaly), thinning of the skin, and excessively sweaty (hyperhidrotic) hands and feet.

Frequency

The prevalence of Camurati-Engelmann disease is unknown. More than 300 cases have been reported worldwide.

Causes

Mutations in the TGFB1 gene cause Camurati-Engelmann disease. The TGFB1 gene provides instructions for producing a protein called transforming growth factor beta-1 (TGFβ-1). The TGFβ-1 protein triggers chemical signals that regulate various cell activities, including the growth and division (proliferation) of cells, the maturation of cells to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis).

The TGFβ-1 protein is found throughout the body but is particularly abundant in tissues that make up the skeleton, where it helps regulate the formation and growth of bone and cartilage, a tough, flexible tissue that makes up much of the skeleton during early development. TGFβ-1 is involved in different processes in other tissues.

The TGFB1 gene mutations that cause Camurati-Engelmann disease result in the production of an overly active TGFβ-1 protein. This abnormal TGFβ-1 protein activity causes an increase in signaling, which leads to more bone formation. As a result, the bones in the arms, legs, and skull are thicker than normal, contributing to the movement and neurological problems often experienced by individuals with Camurati-Engelmann disease.

Some individuals with Camurati-Engelmann disease do not have an identified mutation in the TGFB1 gene. In these cases, the cause of the condition is unknown.

Learn more about the gene associated with Camurati-Engelmann disease

  • TGFB1

Inheritance

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

In some cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family.

Some people who have the altered gene never develop the condition, a situation known as reduced penetrance.

Other Names for This Condition

  • Camurati-Engelmann syndrome
  • CED
  • Diaphyseal dysplasia
  • Diaphyseal hyperostosis
  • Diaphyseal osteosclerosis
  • Engelmann disease
  • PDD
  • Progressive diaphyseal dysplasia

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Diaphyseal dysplasia From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Camurati-Engelmann disease From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • CAMURATI-ENGELMANN DISEASE; CAEND
  • CAMURATI-ENGELMANN DISEASE, TYPE 2

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Carlson ML, Beatty CW, Neff BA, Link MJ, Driscoll CL. Skull base manifestations of Camurati-Engelmann disease. Arch Otolaryngol Head Neck Surg. 2010 Jun;136(6):566-75. doi: 10.1001/archoto.2010.68. Citation on PubMed
  • Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W. Transforming growth factor-beta 1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem. 2003 Feb 28;278(9):7718-24. doi: 10.1074/jbc.M208857200. Epub 2002 Dec 18. Citation on PubMed
  • Janssens K, Vanhoenacker F, Bonduelle M, Verbruggen L, Van Maldergem L, Ralston S, Guanabens N, Migone N, Wientroub S, Divizia MT, Bergmann C, Bennett C, Simsek S, Melancon S, Cundy T, Van Hul W. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J Med Genet. 2006 Jan;43(1):1-11. doi: 10.1136/jmg.2005.033522. Epub 2005 May 13. Citation on PubMed or Free article on PubMed Central
  • Wallace SE, Lachman RS, Mekikian PB, Bui KK, Wilcox WR. Marked phenotypic variability in progressive diaphyseal dysplasia (Camurati-Engelmann disease): report of a four-generation pedigree, identification of a mutation in TGFB1, and review. Am J Med Genet A. 2004 Sep 1;129A(3):235-47. doi: 10.1002/ajmg.a.30148. Citation on PubMed
  • Yuldashev AJ, Shin CH, Kim YS, Jang WY, Park MS, Chae JH, Yoo WJ, Choi IH, Kim OH, Cho TJ. Orthopedic Manifestations of Type I Camurati-Engelmann Disease. Clin Orthop Surg. 2017 Mar;9(1):109-115. doi: 10.4055/cios.2017.9.1.109. Epub 2017 Feb 13. Citation on PubMed or Free article on PubMed Central
  • Zhao L, Hantash BM. TGF-beta1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam Horm. 2011;87:127-41. doi: 10.1016/B978-0-12-386015-6.00042-1. Citation on PubMed
Enlarge image

Related Health Topics

  • Bone Density
  • Bone Diseases
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Bone mineral density test
  • Bone pain or tenderness
  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated November 1, 2017
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP