SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Primary hyperoxaluria
URL of this page: https://medlineplus.gov/genetics/condition/primary-hyperoxaluria/

Primary hyperoxaluria

Description

Primary hyperoxaluria is a rare condition characterized by recurrent kidney and bladder stones. The condition often results in end stage renal disease (ESRD), which is a life-threatening condition that prevents the kidneys from filtering fluids and waste products from the body effectively.

Primary hyperoxaluria results from the overproduction of a substance called oxalate. Oxalate is filtered through the kidneys and excreted as a waste product in urine, leading to abnormally high levels of this substance in urine (hyperoxaluria). During its excretion, oxalate can combine with calcium to form calcium oxalate, a hard compound that is the main component of kidney and bladder stones. Deposits of calcium oxalate can damage the kidneys and other organs and lead to blood in the urine (hematuria), urinary tract infections, kidney damage, ESRD, and injury to other organs. Over time, kidney function decreases such that the kidneys can no longer excrete as much oxalate as they receive. As a result oxalate levels in the blood rise, and the substance gets deposited in tissues throughout the body (systemic oxalosis), particularly in bones and the walls of blood vessels. Oxalosis in bones can cause fractures.

There are three types of primary hyperoxaluria that differ in their severity and genetic cause. In primary hyperoxaluria type 1, kidney stones typically begin to appear anytime from childhood to early adulthood, and ESRD can develop at any age. Primary hyperoxaluria type 2 is similar to type 1, but ESRD develops later in life. In primary hyperoxaluria type 3, affected individuals often develop kidney stones in early childhood, but few cases of this type have been described so additional signs and symptoms of this type are unclear.

Frequency

Primary hyperoxaluria is estimated to affect 1 in 58,000 individuals worldwide. Type 1 is the most common form, accounting for approximately 80 percent of cases. Types 2 and 3 each account for about 10 percent of cases.

Causes

Mutations in the AGXT, GRHPR, and HOGA1 genes cause primary hyperoxaluria types 1, 2, and 3, respectively. These genes provide instructions for making enzymes that are involved in the breakdown and processing of protein building blocks (amino acids) and other compounds. The enzyme produced from the HOGA1 gene is involved in the breakdown of an amino acid, which results in the formation of a compound called glyoxylate. This compound is further broken down by the enzymes produced from the AGXT and GRHPR genes.

Mutations in the AGXT, GRHPR, or HOGA1 gene lead to a decrease in production or activity of the respective proteins, which prevents the normal breakdown of glyoxylate. AGXT and GRHPR gene mutations result in an accumulation of glyoxylate, which is then converted to oxalate for removal from the body as a waste product. HOGA1 gene mutations also result in excess oxalate, although researchers are unsure as to how this occurs. Oxalate that is not excreted from the body combines with calcium to form calcium oxalate deposits, which can damage the kidneys and other organs.

Learn more about the genes associated with Primary hyperoxaluria

  • AGXT
  • GRHPR
  • HOGA1

Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

  • Congenital oxaluria
  • D-glycerate dehydrogenase deficiency
  • Glyceric aciduria
  • Glycolic aciduria
  • Hepatic AGT deficiency
  • Hyperoxaluria, primary
  • Oxalosis
  • Oxaluria, primary
  • Peroxisomal alanine:glyoxylate aminotransferase deficiency
  • Primary oxalosis
  • Primary oxaluria

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Primary hyperoxaluria type 3 From the National Institutes of Health
  • Genetic Testing Registry: Hyperoxaluria From the National Institutes of Health
  • Genetic Testing Registry: Primary hyperoxaluria From the National Institutes of Health
  • Genetic Testing Registry: Primary hyperoxaluria, type I From the National Institutes of Health
  • Genetic Testing Registry: Primary hyperoxaluria, type II From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Primary hyperoxaluria type 1 From the National Institutes of Health
  • Primary hyperoxaluria type 2 From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • HYPEROXALURIA, PRIMARY, TYPE I; HP1
  • HYPEROXALURIA, PRIMARY, TYPE II; HP2
  • HYPEROXALURIA, PRIMARY, TYPE III; HP3

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Allard L, Cochat P, Leclerc AL, Cachat F, Fichtner C, De Souza VC, Garcia CD, Camoin-Schweitzer MC, Macher MA, Acquaviva-Bourdain C, Bacchetta J. Renal function can be impaired in children with primary hyperoxaluria type 3. Pediatr Nephrol. 2015 Oct;30(10):1807-13. doi: 10.1007/s00467-015-3090-x. Epub 2015 May 14. Citation on PubMed
  • Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013 Aug 15;369(7):649-58. doi: 10.1056/NEJMra1301564. No abstract available. Citation on PubMed
  • Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC; Rare Kidney Stone Consortium. Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria. J Am Soc Nephrol. 2015 Oct;26(10):2559-70. doi: 10.1681/ASN.2014070698. Epub 2015 Feb 2. Citation on PubMed or Free article on PubMed Central
  • Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012 Jun 12;8(8):467-75. doi: 10.1038/nrneph.2012.113. Citation on PubMed
  • Milliner DS, Harris PC, Sas DJ, Cogal AG, Lieske JC. Primary Hyperoxaluria Type 1. 2002 Jun 19 [updated 2024 Aug 15]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK1283/ Citation on PubMed
  • Milliner DS, Harris PC, Sas DJ, Lieske JC. Primary Hyperoxaluria Type 3. 2015 Sep 24 [updated 2023 Feb 9]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK316514/ Citation on PubMed
  • Rumsby G, Hulton SA. Primary Hyperoxaluria Type 2. 2008 Dec 2 [updated 2017 Dec 21]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK2692/ Citation on PubMed
Enlarge image

Related Health Topics

  • Amino Acid Metabolism Disorders
  • Genetic Disorders
  • Kidney Stones

MEDICAL ENCYCLOPEDIA

  • Genetics

Related Medical Tests

  • Crystals in Urine

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated December 1, 2015
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP