SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Primary macronodular adrenal hyperplasia
URL of this page: https://medlineplus.gov/genetics/condition/primary-macronodular-adrenal-hyperplasia/

Primary macronodular adrenal hyperplasia

Description

Primary macronodular adrenal hyperplasia (PMAH) is a disorder characterized by multiple lumps (nodules) in the adrenal glands, which are small hormone-producing glands located on top of each kidney. These nodules, which usually are found in both adrenal glands (bilateral) and vary in size, cause adrenal gland enlargement (hyperplasia) and result in the production of higher-than-normal levels of the hormone cortisol. Cortisol is an important hormone that suppresses inflammation and protects the body from physical stress such as infection or trauma through several mechanisms including raising levels of blood glucose, also called blood sugar.

PMAH typically becomes evident in a person's forties or fifties. It is considered a form of Cushing syndrome, which is characterized by increased levels of cortisol resulting from one of many possible causes. These increased cortisol levels lead to weight gain in the face and upper body, fragile skin, bone loss, fatigue, and other health problems. However, some people with PMAH do not experience these signs and symptoms and are said to have subclinical Cushing syndrome.

Frequency

PMAH is a rare disorder. It is present in less than 1 percent of cases of endogenous Cushing syndrome, which describes forms of Cushing syndrome caused by factors internal to the body rather than by external factors such as long-term use of certain medicines called corticosteroids. The prevalence of endogenous Cushing syndrome is about 1 in 26,000 people.

Causes

In about half of individuals with PMAH, the condition is caused by mutations in the ARMC5 gene. This gene provides instructions for making a protein that is thought to act as a tumor suppressor, which means that it helps to prevent cells from growing and dividing too rapidly or in an uncontrolled way. ARMC5 gene mutations are believed to impair the protein's tumor-suppressor function, which allows the overgrowth of certain cells. It is unclear why this overgrowth is limited to the formation of adrenal gland nodules in people with PMAH.

PMAH can also be caused by mutations in the GNAS gene. This gene provides instructions for making one component, the stimulatory alpha subunit, of a protein complex called a guanine nucleotide-binding protein (G protein). The G protein produced from the GNAS gene helps stimulate the activity of an enzyme called adenylate cyclase. This enzyme is involved in controlling the production of several hormones that help regulate the activity of certain endocrine glands, including the adrenal glands. The GNAS gene mutations that cause PMAH are believed to result in an overactive G protein. Research suggests that the overactive G protein may increase levels of adenylate cyclase and result in the overproduction of another compound called cyclic AMP (cAMP). An excess of cAMP may trigger abnormal cell growth and lead to the adrenal nodules characteristic of PMAH.

Mutations in other genes, some of which are unknown, can also cause PMAH.

Learn more about the genes associated with Primary macronodular adrenal hyperplasia

  • APC
  • ARMC5
  • FH
  • GNAS
  • MC2R
  • MEN1

Additional Information from NCBI Gene:

  • PDE11A

Inheritance

People with PMAH caused by ARMC5 gene mutations inherit one copy of the mutated gene in each cell. The inheritance is considered autosomal dominant because one copy of the mutated gene is sufficient to make an individual susceptible to PMAH. However, the condition develops only when affected individuals acquire another mutation in the other copy of the ARMC5 gene in certain cells of the adrenal glands. This second mutation is described as somatic. Instead of being passed from parent to child, somatic mutations are acquired during a person's lifetime and are present only in certain cells. Because somatic mutations are also required for PMAH to occur, some people who have inherited the altered ARMC5 gene never develop the condition, a situation known as reduced penetrance.

When PMAH is caused by GNAS gene mutations, the condition is not inherited. The GNAS gene mutations that cause PMAH are somatic mutations. In PMAH, the gene mutation is believed to occur early in embryonic development. Cells with the mutated GNAS gene can be found in both adrenal glands.

Other Names for This Condition

  • ACTH-independent macronodular adrenal hyperplasia
  • ACTH-independent macronodular adrenocortical hyperplasia
  • Adrenal Cushing syndrome due to AIMAH
  • Adrenocorticotropic hormone-independent macronodular adrenal hyperplasia
  • AIMAH
  • Corticotropin-independent macronodular adrenal hyperplasia
  • PMAH
  • Primary bilateral macronodular adrenal hyperplasia

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Acth-independent macronodular adrenal hyperplasia 2 From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Cushing syndrome due to macronodular adrenal hyperplasia From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • ACTH-INDEPENDENT MACRONODULAR ADRENAL HYPERPLASIA; AIMAH1
  • ACTH-INDEPENDENT MACRONODULAR ADRENAL HYPERPLASIA 2; AIMAH2

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Alencar GA, Lerario AM, Nishi MY, Mariani BM, Almeida MQ, Tremblay J, Hamet P, Bourdeau I, Zerbini MC, Pereira MA, Gomes GC, Rocha Mde S, Chambo JL, Lacroix A, Mendonca BB, Fragoso MC. ARMC5 mutations are a frequent cause of primary macronodular adrenal Hyperplasia. J Clin Endocrinol Metab. 2014 Aug;99(8):E1501-9. doi: 10.1210/jc.2013-4237. Epub 2014 Apr 7. Citation on PubMed
  • Assie G, Libe R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, Barreau O, Lefevre L, Sibony M, Guignat L, Rodriguez S, Perlemoine K, Rene-Corail F, Letourneur F, Trabulsi B, Poussier A, Chabbert-Buffet N, Borson-Chazot F, Groussin L, Bertagna X, Stratakis CA, Ragazzon B, Bertherat J. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N Engl J Med. 2013 Nov 28;369(22):2105-14. doi: 10.1056/NEJMoa1304603. Citation on PubMed or Free article on PubMed Central
  • De Venanzi A, Alencar GA, Bourdeau I, Fragoso MC, Lacroix A. Primary bilateral macronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2014 Jun;21(3):177-84. doi: 10.1097/MED.0000000000000061. Citation on PubMed
  • Elbelt U, Trovato A, Kloth M, Gentz E, Finke R, Spranger J, Galas D, Weber S, Wolf C, Konig K, Arlt W, Buttner R, May P, Allolio B, Schneider JG. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab. 2015 Jan;100(1):E119-28. doi: 10.1210/jc.2014-2648. Citation on PubMed or Free article on PubMed Central
  • Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N, Berthon A, Libe R, Assie G, Espiard S, Drougat L, Ragazzon B, Bertherat J, Stratakis CA. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab. 2014 Jun;99(6):E1113-9. doi: 10.1210/jc.2013-4280. Epub 2014 Mar 6. Citation on PubMed or Free article on PubMed Central
  • Fragoso MC, Domenice S, Latronico AC, Martin RM, Pereira MA, Zerbini MC, Lucon AM, Mendonca BB. Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab. 2003 May;88(5):2147-51. doi: 10.1210/jc.2002-021362. Citation on PubMed
  • Gagliardi L, Schreiber AW, Hahn CN, Feng J, Cranston T, Boon H, Hotu C, Oftedal BE, Cutfield R, Adelson DL, Braund WJ, Gordon RD, Rees DA, Grossman AB, Torpy DJ, Scott HS. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab. 2014 Sep;99(9):E1784-92. doi: 10.1210/jc.2014-1265. Epub 2014 Jun 6. Citation on PubMed
Enlarge image

Related Health Topics

  • Adrenal Gland Disorders
  • Cushing's Syndrome
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated May 1, 2015
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP