SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Recurrent hydatidiform mole
URL of this page: https://medlineplus.gov/genetics/condition/recurrent-hydatidiform-mole/

Recurrent hydatidiform mole

Description

Recurrent hydatidiform mole is a condition that affects women and is characterized by the occurrence of at least two abnormal pregnancies that result in the formation of hydatidiform moles. A hydatidiform mole is a mass that forms early in pregnancy and is made up of cells from an abnormally developed embryo and placenta. Normally, the embryo would develop into a fetus and the placenta would grow to provide nutrients to the growing fetus. When a hydatidiform mole occurs once, it is known as sporadic hydatidiform mole; if it happens again, the condition is known as recurrent hydatidiform mole.

The first symptom of a hydatidiform mole is often vaginal bleeding in the first trimester of pregnancy. During an ultrasound examination, the abnormal placenta appears as numerous small sacs, often described as resembling a bunch of grapes.

Hydatidiform moles are not naturally discharged from the body and must be surgically removed, typically by the end of the first trimester. After removal, there is up to a 20 percent risk that any tissue left behind will continue to grow and become a cancerous (malignant) tumor called a persistent mole. If the tumor invades the surrounding tissue of the uterus, it is called an invasive mole. In rare cases, this malignant tumor can transform into a different form of cancer called gestational choriocarcinoma that can spread (metastasize) to other tissues such as the liver, lungs, or brain.

Frequency

Hydatidiform moles occur in 1 in 600 to 1,000 pregnancies in western countries. One to six percent of previously affected women will have a recurrent hydatidiform mole. Gestational choriocarcinoma occurs in 1 in 20,000 to 50,000 pregnancies in the United States.

Causes

Mutations in multiple genes have been found to cause recurrent hydatidiform mole. About 55 percent of cases of this condition are caused by NLRP7 gene mutations and about 5 percent of cases are caused by KHDC3L gene mutations. Mutations in other genes each account for a small percentage of cases.

The proteins produced from the NLRP7 and KHDC3L genes are critical for normal egg cell (oocyte) development, which impacts embryonic development. Within oocytes, the exact role of NLRP7 and KHDC3L proteins are not known. However, they are thought to play a role in a phenomenon known as genomic imprinting. Through genomic imprinting certain genes are turned off (inactivated) based on which parent the copy of the gene came from. For most genes, both copies of the gene (one copy inherited from each parent) are active in all cells. However, for a small subset of genes, only one of the two copies is active and the other is turned off. For some of these genes, the copy from the father is normally active, while for others, the copy from the mother is normally active.

NLRP7 or KHDC3L gene mutations result in the production of proteins with impaired function. As a result, oocytes do not develop normally. A pregnancy that results from an abnormal oocyte cannot develop properly, resulting in recurrent hydatidiform mole. NLRP7 or KHDC3L gene mutations can also prevent proper imprinting of multiple genes that contribute to a developing embryo, leading to abnormal gene activity (expression). It is not clear if problems with imprinting also contribute to the development of a hydatidiform mole. In women with NLRP7 or KHDC3L gene mutations, a hydatidiform mole will develop in every pregnancy that occurs with her egg cells.

A small number of cases of recurrent hydatidiform mole have been found to be caused by mutations in genes that play important roles in the production of oocytes and sperm cells. The proteins produced from these genes are involved in the normal process of exchanging genetic material between chromosomes in preparation for cell division during oocyte and sperm cell production. These proteins are needed to make breaks in the chromosomes so that genetic information can be exchanged.

Mutations in these genes prevent the normal function of the proteins involved in the exchange of genetic material. Without the exchange of genetic material, cell division is often stopped. In affected women, this can lead to the production of abnormal oocytes that do not contain chromosomes. When a normal sperm cell fertilizes one of these oocytes, the resulting embryo has only one set of chromosomes. Because the embryo has no genes from the mother, the pregnancy cannot develop normally, resulting in a hydatidiform mole. In women with these rare gene mutations, every pregnancy that occurs with her egg cells will result in a hydatidiform mole or pregnancy loss (miscarriage).

In some cases of recurrent hydatidiform mole, no mutations in any of the genes associated with the condition have been identified. In these instances, the cause of the condition is unknown.

Learn more about the genes associated with Recurrent hydatidiform mole

  • KHDC3L
  • NLRP7

Additional Information from NCBI Gene:

  • C11orf80
  • MEI1
  • REC114

Inheritance

Recurrent hydatidiform mole is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Recurrent hydatidiform mole seems to have an autosomal recessive inheritance pattern even when the genetic cause of the condition is unknown.

Other Names for This Condition

  • Familial recurrent hydatidiform mole
  • FRHM
  • Recurrent androgenetic hydatidiform mole
  • Recurrent biparental hydatidiform mole

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Hydatidiform mole, recurrent, 1 From the National Institutes of Health
  • Genetic Testing Registry: Hydatidiform mole, recurrent, 2 From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Hydatidiform mole From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Catalog of Genes and Diseases from OMIM

  • HYDATIDIFORM MOLE, RECURRENT, 1; HYDM1
  • HYDATIDIFORM MOLE, RECURRENT, 2; HYDM2

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Fallahian M, Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013 Feb;34(2):301-8. doi: 10.1002/humu.22228. Epub 2012 Nov 2. Citation on PubMed
  • Hayward BE, De Vos M, Talati N, Abdollahi MR, Taylor GR, Meyer E, Williams D, Maher ER, Setna F, Nazir K, Hussaini S, Jafri H, Rashid Y, Sheridan E, Bonthron DT. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009 May;30(5):E629-39. doi: 10.1002/humu.20993. Citation on PubMed
  • Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. Annu Rev Pathol. 2017 Jan 24;12:449-485. doi: 10.1146/annurev-pathol-052016-100237. Citation on PubMed
  • Mahadevan S, Wen S, Wan YW, Peng HH, Otta S, Liu Z, Iacovino M, Mahen EM, Kyba M, Sadikovic B, Van den Veyver IB. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014 Feb 1;23(3):706-16. doi: 10.1093/hmg/ddt457. Epub 2013 Sep 18. Citation on PubMed or Free article on PubMed Central
  • Messaed C, Chebaro W, Di Roberto RB, Rittore C, Cheung A, Arseneau J, Schneider A, Chen MF, Bernishke K, Surti U, Hoffner L, Sauthier P, Buckett W, Qian J, Lau NM, Bagga R, Engert JC, Coullin P, Touitou I, Slim R; H M Collaborative Group. NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J Med Genet. 2011 Aug;48(8):540-8. doi: 10.1136/jmg.2011.089144. Epub 2011 Jun 9. Citation on PubMed
  • Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, Slim R. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006 Mar;38(3):300-2. doi: 10.1038/ng1740. Epub 2006 Feb 5. Citation on PubMed
  • Nguyen NM, Slim R. Genetics and Epigenetics of Recurrent Hydatidiform Moles: Basic Science and Genetic Counselling. Curr Obstet Gynecol Rep. 2014 Jan 21;3(1):55-64. doi: 10.1007/s13669-013-0076-1. eCollection 2014. Citation on PubMed or Free article on PubMed Central
  • Nguyen NMP, Ge ZJ, Reddy R, Fahiminiya S, Sauthier P, Bagga R, Sahin FI, Mahadevan S, Osmond M, Breguet M, Rahimi K, Lapensee L, Hovanes K, Srinivasan R, Van den Veyver IB, Sahoo T, Ao A, Majewski J, Taketo T, Slim R. Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles. Am J Hum Genet. 2018 Nov 1;103(5):740-751. doi: 10.1016/j.ajhg.2018.10.007. Citation on PubMed or Free article on PubMed Central
  • Parry DA, Logan CV, Hayward BE, Shires M, Landolsi H, Diggle C, Carr I, Rittore C, Touitou I, Philibert L, Fisher RA, Fallahian M, Huntriss JD, Picton HM, Malik S, Taylor GR, Johnson CA, Bonthron DT, Sheridan EG. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011 Sep 9;89(3):451-8. doi: 10.1016/j.ajhg.2011.08.002. Epub 2011 Sep 1. Citation on PubMed or Free article on PubMed Central
  • Slim R, Wallace EP. NLRP7 and the Genetics of Hydatidiform Moles: Recent Advances and New Challenges. Front Immunol. 2013 Aug 20;4:242. doi: 10.3389/fimmu.2013.00242. eCollection 2013. Citation on PubMed or Free article on PubMed Central
  • Soper JT, Mutch DG, Schink JC; American College of Obstetricians and Gynecologists. Diagnosis and treatment of gestational trophoblastic disease: ACOG Practice Bulletin No. 53. Gynecol Oncol. 2004 Jun;93(3):575-85. doi: 10.1016/j.ygyno.2004.05.013. Citation on PubMed
  • Williams D, Hodgetts V, Gupta J. Recurrent hydatidiform moles. Eur J Obstet Gynecol Reprod Biol. 2010 May;150(1):3-7. doi: 10.1016/j.ejogrb.2010.01.003. Epub 2010 Feb 19. Citation on PubMed
Enlarge image

Related Health Topics

  • Female Infertility
  • Genetic Disorders
  • Miscarriage
  • Tumors and Pregnancy

MEDICAL ENCYCLOPEDIA

  • Choriocarcinoma
  • Genetics
  • Gestational trophoblastic disease
  • Hydatidiform mole

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated December 1, 2018
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP