SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Spastic paraplegia type 3A
URL of this page: https://medlineplus.gov/genetics/condition/spastic-paraplegia-type-3a/

Spastic paraplegia type 3A

Description

Spastic paraplegia type 3A is one of a group of genetic disorders known as hereditary spastic paraplegias. These disorders are characterized by muscle stiffness (spasticity) and weakness in the lower limbs (paraplegia). Hereditary spastic paraplegias are often divided into two types: pure and complex. The pure types involve only the lower limbs, while the complex types also involve other areas of the body; additional features can include changes in vision, changes in intellectual functioning, difficulty walking, and disturbances in nerve function (neuropathy). Spastic paraplegia type 3A is usually a pure hereditary spastic paraplegia, although a few complex cases have been reported.

In addition to spasticity and weakness, which typically affect both legs equally, people with spastic paraplegia type 3A can also experience progressive muscle wasting (amyotrophy) in the lower limbs, reduced bladder control, an abnormal curvature of the spine (scoliosis), loss of sensation in the feet (peripheral neuropathy), or high arches of the feet (pes cavus). The signs and symptoms of spastic paraplegia type 3A usually appear before the age of 10; the average age of onset is 4 years. In some affected individuals the condition slowly worsens over time, sometimes leading to a need for walking support.

Frequency

Spastic paraplegia type 3A belongs to a subgroup of hereditary spastic paraplegias known as autosomal dominant hereditary spastic paraplegia, which has an estimated prevalence of 2 to 9 per 100,000 individuals. Spastic paraplegia type 3A accounts for 10 to 15 percent of all autosomal dominant hereditary spastic paraplegia cases.

Causes

Mutations in the ATL1 gene cause spastic paraplegia type 3A. The ATL1 gene provides instructions for producing a protein called atlastin-1. Atlastin-1 is produced primarily in the brain and spinal cord (central nervous system), particularly in nerve cells (neurons) that extend down the spinal cord (corticospinal tracts). These neurons send electrical signals that lead to voluntary muscle movement. Atlastin-1 is involved in the growth of specialized extensions of neurons, called axons, which transmit nerve impulses that signal muscle movement. The protein also likely plays a role in the normal functioning of multiple structures within neurons and in distributing materials within these cells.

ATL1 gene mutations likely lead to a shortage of normal atlastin-1 protein, which impairs the functioning of neurons, including the distribution of materials within these cells. This lack of functional atlastin-1 protein may also restrict the growth of axons. These problems can lead to the abnormal functioning or death of the long neurons of the corticospinal tracts. As a result, the neurons are unable to transmit nerve impulses, particularly to other neurons and muscles in the lower extremities. This impaired nerve function leads to the signs and symptoms of spastic paraplegia type 3A.

Learn more about the gene associated with Spastic paraplegia type 3A

  • ATL1

Inheritance

Spastic paraplegia type 3A is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In approximately 95 percent of cases, an affected person inherits the mutation from one affected parent.

Other Names for This Condition

  • Spastic paraplegia 3
  • Spastic paraplegia 3A
  • SPG3A

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Hereditary spastic paraplegia From the National Institutes of Health
  • Genetic Testing Registry: Hereditary spastic paraplegia 3A From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Autosomal dominant spastic paraplegia type 3 From the National Institutes of Health
  • Hereditary spastic paraplegia From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • SPASTIC PARAPLEGIA 3, AUTOSOMAL DOMINANT; SPG3A

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Alvarez V, Sanchez-Ferrero E, Beetz C, Diaz M, Alonso B, Corao AI, Gamez J, Esteban J, Gonzalo JF, Pascual-Pascual SI, Lopez de Munain A, Moris G, Ribacoba R, Marquez C, Rosell J, Marin R, Garcia-Barcina MJ, Del Castillo E, Benito C, Coto E; Group for the Study of the Genetics of Spastic Paraplegia. Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia. BMC Neurol. 2010 Oct 8;10:89. doi: 10.1186/1471-2377-10-89. Citation on PubMed or Free article on PubMed Central
  • Blackstone C. Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci. 2012;35:25-47. doi: 10.1146/annurev-neuro-062111-150400. Epub 2012 Apr 20. Citation on PubMed
  • Ivanova N, Claeys KG, Deconinck T, Litvinenko I, Jordanova A, Auer-Grumbach M, Haberlova J, Lofgren A, Smeyers G, Nelis E, Mercelis R, Plecko B, Priller J, Zamecnik J, Ceulemans B, Erichsen AK, Bjorck E, Nicholson G, Sereda MW, Seeman P, Kremensky I, Mitev V, De Jonghe P. Hereditary spastic paraplegia 3A associated with axonal neuropathy. Arch Neurol. 2007 May;64(5):706-13. doi: 10.1001/archneur.64.5.706. Citation on PubMed
  • Leonardi L, Marcotulli C, Santorelli FM, Tessa A, Casali C. De novo mutations in SPG3A: a challenge in differential diagnosis and genetic counselling. Neurol Sci. 2015 Jun;36(6):1063-4. doi: 10.1007/s10072-015-2097-1. Epub 2015 Jan 31. No abstract available. Citation on PubMed
  • Leonardis L, Auer-Grumbach M, Papic L, Zidar J. The N355K atlastin 1 mutation is associated with hereditary sensory neuropathy and pyramidal tract features. Eur J Neurol. 2012 Jul;19(7):992-8. doi: 10.1111/j.1468-1331.2012.03665.x. Epub 2012 Feb 16. Citation on PubMed
  • Namekawa M, Ribai P, Nelson I, Forlani S, Fellmann F, Goizet C, Depienne C, Stevanin G, Ruberg M, Durr A, Brice A. SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology. 2006 Jan 10;66(1):112-4. doi: 10.1212/01.wnl.0000191390.20564.8e. Citation on PubMed
  • Zhu PP, Soderblom C, Tao-Cheng JH, Stadler J, Blackstone C. SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum Mol Genet. 2006 Apr 15;15(8):1343-53. doi: 10.1093/hmg/ddl054. Epub 2006 Mar 14. Citation on PubMed
Genetic Counseling

Related Health Topics

  • Genetic Disorders
  • Neurologic Diseases
  • Neuromuscular Disorders
  • Paralysis

MEDICAL ENCYCLOPEDIA

  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2015
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP