SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
MMP14 gene
URL of this page: https://medlineplus.gov/genetics/gene/mmp14/

MMP14 gene

matrix metallopeptidase 14

Normal Function

The MMP14 gene (also known as MT1-MMP) provides instructions for making an enzyme called matrix metallopeptidase 14. This enzyme is found on the surface of many types of cells. It normally helps modify and break down various components of the extracellular matrix, which is the intricate lattice of proteins and other molecules that forms in the spaces between cells. These changes influence many cell activities and functions. For example, they have been shown to promote cell growth, stimulate cell movement (migration), and trigger the formation of new blood vessels (angiogenesis).

Matrix metallopeptidase 14 also turns on (activates) a protein called matrix metallopeptidase 2 in the extracellular matrix. The activity of matrix metallopeptidase 2 appears to be important for a variety of body functions, including bone remodeling, which is a normal process in which old bone is broken down and new bone is created to replace it.

Although most research has focused on the role of matrix metallopeptidase 14 in the extracellular matrix, studies suggest that it may also be involved in signaling pathways within cells. Little is known about this function of the enzyme.

Health Conditions Related to Genetic Changes

Winchester syndrome

At least one mutation in the MMP14 gene has been found to cause Winchester syndrome, a rare inherited bone disease that is characterized by a loss of bone tissue (osteolysis), particularly in the hands and feet, as well as joint and skin abnormalities. The mutation changes a single protein building block (amino acid) in matrix metallopeptidase 14. Specifically, it replaces the amino acid threonine with the amino acid arginine at position 17 (written as Thr17Arg or T17R).

The identified mutation alters matrix metallopeptidase 14 so that less of the enzyme is able to reach the cell surface. As a result, not enough of the enzyme is available to break down components of the extracellular matrix and activate matrix metallopeptidase 2. It is unclear how a shortage of this enzyme leads to the signs and symptoms of Winchester syndrome. It is possible that a loss of matrix metallopeptidase 2 activation somehow disrupts the balance of new bone creation and the breakdown of existing bone during bone remodeling, causing a progressive loss of bone tissue. How a reduced amount of matrix metallopeptidase 14 leads to the other features of Winchester syndrome is unknown.

More About This Health Condition

Other Names for This Gene

  • matrix metallopeptidase 14 (membrane-inserted)
  • matrix metalloproteinase-14
  • matrix metalloproteinase-14 preproprotein
  • membrane type 1 metalloprotease
  • membrane-type-1 matrix metalloproteinase
  • MMP-14
  • MMP-X1
  • MMP14_HUMAN
  • MT-MMP
  • MT-MMP 1
  • MT1-MMP
  • MT1MMP
  • MTMMP1
  • WNCHRS

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of MMP14 From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • MATRIX METALLOPROTEINASE 14; MMP14

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Evans BR, Mosig RA, Lobl M, Martignetti CR, Camacho C, Grum-Tokars V, Glucksman MJ, Martignetti JA. Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome. Am J Hum Genet. 2012 Sep 7;91(3):572-6. doi: 10.1016/j.ajhg.2012.07.022. Epub 2012 Aug 23. Citation on PubMed or Free article on PubMed Central
  • Itoh Y, Seiki M. MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol. 2006 Jan;206(1):1-8. doi: 10.1002/jcp.20431. Citation on PubMed
  • Itoh Y. MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life. 2006 Oct;58(10):589-96. doi: 10.1080/15216540600962818. Citation on PubMed
  • Koziol A, Martin-Alonso M, Clemente C, Gonzalo P, Arroyo AG. Site-specific cellular functions of MT1-MMP. Eur J Cell Biol. 2012 Nov-Dec;91(11-12):889-95. doi: 10.1016/j.ejcb.2012.07.003. Epub 2012 Aug 30. Citation on PubMed
DNA helix

Genomic Location

The MMP14 gene is found on chromosome 14.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated December 1, 2013
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP