SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genes →
RARA gene
URL of this page: https://medlineplus.gov/genetics/gene/rara/

RARA gene

retinoic acid receptor alpha

Normal Function

The RARA gene provides instructions for making a transcription factor called the retinoic acid receptor, alpha (RARα). A transcription factor is a protein that attaches (binds) to specific regions of DNA and helps control the activity of particular genes. The RARα protein controls the activity (transcription) of genes that are important for the maturation (differentiation) of immature white blood cells beyond a particular stage called the promyelocyte.

The RARα protein binds to specific regions of DNA and attracts other proteins that help block (repress) gene transcription, the first step in protein production. In response to a specific signal, the repressive proteins are removed and other proteins that induce gene transcription bind to the RARα protein, allowing gene transcription and cell differentiation.

Health Conditions Related to Genetic Changes

Acute promyelocytic leukemia

Gene mutations can be acquired during a person's lifetime and are present only in certain cells. These mutations are called somatic mutations, and they are not inherited. A somatic mutation involving the RARA gene causes acute promyelocytic leukemia, a cancer of the blood forming tissue (bone marrow). Acute promyelocytic leukemia is characterized by an accumulation of promyelocytes in the bone marrow. A rearrangement (translocation) of genetic material between chromosomes 15 and 17, written as t(15;17), fuses part of the RARA gene on chromosome 17 with part of another gene on chromosome 15 called PML. The protein produced from this fused gene, the PML-RARα protein, functions differently than the protein products of the normal PML and RARA genes.

The PML-RARα protein binds to DNA and represses gene transcription, like the normal RARα protein. However, the PML-RARα protein does not respond to the signal to induce transcription of genes, so the genes remain repressed.

Additionally, the function of the PML protein, the product of the PML gene, is disrupted. The PML protein blocks cell growth and division (proliferation) and induces self-destruction (apoptosis) in combination with other proteins. However, the PML-RARα protein does not block proliferation or induce apoptosis.

The PML-RARα protein blocks the differentiation of blood cells at the promyelocyte stage and allows abnormal cell proliferation. As a result, excess promyelocytes accumulate in the bone marrow and normal white blood cells cannot form, leading to acute promyelocytic leukemia.

More About This Health Condition

Other Names for This Gene

  • NR1B1
  • nuclear receptor subfamily 1 group B member 1
  • RAR
  • RAR-alpha
  • retinoic acid receptor, alpha

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

  • Tests of RARA From the National Institutes of Health

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • RETINOIC ACID RECEPTOR, ALPHA; RARA

Gene and Variant Databases

  • NCBI Gene From the National Institutes of Health
  • ClinVar From the National Institutes of Health

References

  • Collins SJ. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia. 2002 Oct;16(10):1896-905. doi: 10.1038/sj.leu.2402718. Citation on PubMed
  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991 Aug 23;66(4):675-84. doi: 10.1016/0092-8674(91)90113-d. Citation on PubMed
  • Pandolfi PP. Oncogenes and tumor suppressors in the molecular pathogenesis of acute promyelocytic leukemia. Hum Mol Genet. 2001 Apr;10(7):769-75. doi: 10.1093/hmg/10.7.769. Citation on PubMed
  • Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002 Jan 25;108(2):165-70. doi: 10.1016/s0092-8674(02)00626-8. Citation on PubMed
  • Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001 Oct 29;20(49):7186-203. doi: 10.1038/sj.onc.1204766. Citation on PubMed
DNA helix

Genomic Location

The RARA gene is found on chromosome 17.

Related Health Topics

  • Genes and Gene Therapy
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genes
  • Genetics

Understanding Genetics

  • What is DNA?
  • What is a gene?
  • What is a gene variant and how do variants occur?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated April 1, 2011
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP