SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Dyserythropoietic anemia and thrombocytopenia
URL of this page: https://medlineplus.gov/genetics/condition/dyserythropoietic-anemia-and-thrombocytopenia/

Dyserythropoietic anemia and thrombocytopenia

Description

Dyserythropoietic anemia and thrombocytopenia is a condition that affects blood cells and primarily occurs in males. A main feature of this condition is a type of anemia called dyserythropoietic anemia, which is characterized by a shortage of red blood cells. The term "dyserythropoietic" refers to the abnormal red blood cell formation that occurs in this condition. In affected individuals, immature red blood cells are unusually shaped and cannot develop into functional mature cells, leading to a shortage of healthy red blood cells. People with dyserythropoietic anemia and thrombocytopenia can have another blood disorder characterized by a reduced level of circulating platelets (thrombocytopenia). Platelets are cells that normally assist with blood clotting. Thrombocytopenia can cause easy bruising and abnormal bleeding. While people with dyserythropoietic anemia and thrombocytopenia can have signs and symptoms of both blood disorders, some are primarily affected by anemia, while others are more affected by thrombocytopenia.

The most severe cases of dyserythropoietic anemia and thrombocytopenia are characterized by hydrops fetalis, a condition in which excess fluid builds up in the body before birth. For many others, the signs and symptoms of dyserythropoietic anemia and thrombocytopenia begin in infancy. People with this condition experience prolonged bleeding or bruising after minor trauma or even in the absence of injury (spontaneous bleeding). Anemia can cause pale skin, weakness, and fatigue. Severe anemia may create a need for frequent blood transfusions to replenish the supply of red blood cells; however, repeated blood transfusions over many years can cause health problems such as excess iron in the blood. People with dyserythropoietic anemia and thrombocytopenia may also have a shortage of white blood cells (neutropenia), which can make them prone to recurrent infections. Additionally, they may have an enlarged spleen (splenomegaly). The severity of these abnormalities varies among affected individuals.

Some people with dyserythropoietic anemia and thrombocytopenia have additional blood disorders such as beta thalassemia or congenital erythropoietic porphyria. Beta thalassemia is a condition that reduces the production of hemoglobin, which is the iron-containing protein in red blood cells that carries oxygen. A decrease in hemoglobin can lead to a shortage of oxygen in cells and tissues throughout the body. Congenital erythropoietic porphyria is another disorder that impairs hemoglobin production. People with congenital erythropoietic porphyria are also very sensitive to sunlight, and areas of skin exposed to the sun can become fragile and blistered.

Frequency

Dyserythropoietic anemia and thrombocytopenia is a rare condition; its prevalence is unknown. Occasionally, individuals with this disorder are mistakenly diagnosed as having more common blood disorders, making it even more difficult to determine how many people have dyserythropoietic anemia and thrombocytopenia.

Causes

Mutations in the GATA1 gene cause dyserythropoietic anemia and thrombocytopenia. The GATA1 gene provides instructions for making a protein that attaches (binds) to specific regions of DNA and helps control the activity of many other genes. On the basis of this action, the GATA1 protein is known as a transcription factor. The GATA1 protein is involved in the specialization (differentiation) of immature blood cells. To function properly, these immature cells must differentiate into specific types of mature blood cells. Through its activity as a transcription factor and its interactions with other proteins, the GATA1 protein regulates the growth and division (proliferation) of immature red blood cells and platelet-precursor cells (megakaryocytes) and helps with their differentiation.

GATA1 gene mutations disrupt the protein's ability to bind with DNA or interact with other proteins. These impairments in the GATA1 protein's normal function result in an increased proliferation of megakaryocytes and a decrease in mature platelets, leading to abnormal bleeding. An abnormal GATA1 protein causes immature red blood cells to undergo a form of programmed cell death called apoptosis. A lack of immature red blood cells results in decreased amounts of specialized, mature red blood cells, leading to anemia. The severity of dyserythropoietic anemia and thrombocytopenia can usually be predicted by the type of GATA1 gene mutation.

When the two blood disorders dyserythropoietic anemia and thrombocytopenia occur separately, each of the conditions can result from many different factors. The occurrence of these disorders together is characteristic of mutations in the GATA1 gene.

Learn more about the gene associated with Dyserythropoietic anemia and thrombocytopenia

  • GATA1

Inheritance

This condition is inherited in an X-linked pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes in each cell. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. Because females have two copies of the X chromosome, one altered copy of the gene in each cell usually leads to less severe symptoms in females than in males or may cause no symptoms in females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Other Names for This Condition

  • Dyserythropoietic anemia with thrombocytopenia
  • GATA-1-related thrombocytopenia with dyserythropoiesis
  • GATA1-related cytopenia
  • GATA1-related X-linked cytopenia
  • X-linked macrothrombocytopenia

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Thrombocytopenia, X-linked, with or without dyserythropoietic anemia From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Catalog of Genes and Diseases from OMIM

  • THROMBOCYTOPENIA, X-LINKED, WITH OR WITHOUT DYSERYTHROPOIETIC ANEMIA; XLTDA

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Crispino JD. GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol. 2005 Feb;16(1):137-47. doi: 10.1016/j.semcdb.2004.11.002. Epub 2004 Dec 13. Citation on PubMed
  • Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005 Feb;25(4):1215-27. doi: 10.1128/MCB.25.4.1215-1227.2005. No abstract available. Citation on PubMed or Free article on PubMed Central
  • Millikan PD, Balamohan SM, Raskind WH, Kacena MA. Inherited thrombocytopenia due to GATA-1 mutations. Semin Thromb Hemost. 2011 Sep;37(6):682-9. doi: 10.1055/s-0031-1291378. Epub 2011 Nov 18. Citation on PubMed
  • Splendore A, Magalhaes IQ, Pombo-de-Oliveira MS. GATA1 mutations in myeloproliferative disorders: nomenclature standardization and review of the literature. Hum Mutat. 2005 Oct;26(4):390-2. doi: 10.1002/humu.20233. No abstract available. Citation on PubMed
  • Takasaki K, Kacena MA, Raskind WH, Weiss MJ, Chou ST. GATA1-Related Cytopenia. 2006 Nov 22 [updated 2023 Feb 16]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews(R) [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from http://www.ncbi.nlm.nih.gov/books/NBK1364/ Citation on PubMed
Enlarge image

Related Health Topics

  • Blood Disorders
  • Genetic Disorders
  • Platelet Disorders
  • Porphyria
  • Thalassemia

MEDICAL ENCYCLOPEDIA

  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated October 1, 2014
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP