SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!
24/7 HELPLINE (903) 212-7500
  • PATIENT PORTAL LOGIN

PhyNet Health PhyNet Health

  • Home
  • Find a Clinic
    • Hughes Springs, TX
    • Longview, TX
    • Jefferson, TX
    • Kilgore, TX
    • Lindale, TX
    • Linden, TX
    • Gladewater, TX
    • Lone Star, TX
    • Tatum, TX
    • Marshall, TX
  • Health Services
    • Primary Care Services
    • Physical Therapy / Rehab
    • Allergy Testing & Treatment
    • Chronic Care Management
    • Remote Monitoring Program
    • Virtual Visit
  • Resources
    • MedlinePlus Wiki
      • Health Topics
    • Home Health Coordination
    • Transitions of Care
    • Insurance Help
  • About Phynet
    • About Phynet
    • PhyNet News
    • Better Together Stories
    • Careers
  • Billing

Health Topics

Skip navigation

An official website of the United States government

Here’s how you know

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health National Library of Medicine
MedlinePlus Trusted Health Information for You
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Health Topics
  • Drugs & Supplements
  • Genetics
  • Medical Tests
  • Medical Encyclopedia
You Are Here:
Home →
Genetics →
Genetic Conditions →
Hereditary multiple osteochondromas
URL of this page: https://medlineplus.gov/genetics/condition/hereditary-multiple-osteochondromas/

Hereditary multiple osteochondromas

Description

Hereditary multiple osteochondromas is a condition in which people develop multiple benign (noncancerous) bone tumors called osteochondromas. The number of osteochondromas and the bones on which they are located vary greatly among affected individuals. The osteochondromas are not present at birth, but approximately 96 percent of affected people develop multiple osteochondromas by the time they are 12 years old. Osteochondromas typically form at the end of long bones and on flat bones such as the hip and shoulder blade.

Multiple osteochondromas can disrupt bone growth and can cause growth disturbances of the arms, hands, and legs, leading to short stature. Often these problems with bone growth do not affect the right and left limb equally, resulting in uneven limb lengths (limb length discrepancy). Bowing of the forearm or ankle and abnormal development of the hip joints (hip dysplasia) caused by osteochondromas can lead to difficulty walking and general discomfort. Multiple osteochondromas may also result in pain, limited range of joint movement, and pressure on nerves, blood vessels, the spinal cord, and tissues surrounding the osteochondromas.

Osteochondromas are typically benign; however, in some instances these tumors become malignant (cancerous). Researchers estimate that people with hereditary multiple osteochondromas have a 1 in 20 to 1 in 200 lifetime risk of developing cancerous osteochondromas (called sarcomas).

Frequency

The incidence of hereditary multiple osteochondromas is estimated to be 1 in 50,000 individuals. This condition occurs more frequently in some isolated populations: the incidence is approximately 1 in 1,000 in the Chamorro population of Guam and 1 in 77 in the Ojibway Indian population of Manitoba, Canada.

Causes

Mutations in the EXT1 and EXT2 genes cause hereditary multiple osteochondromas. The EXT1 gene and the EXT2 gene provide instructions for producing the proteins exostosin-1 and exostosin-2, respectively. The two exostosin proteins bind together and form a complex found in a cell structure called the Golgi apparatus, which modifies newly produced enzymes and other proteins. In the Golgi apparatus, the exostosin-1 and exostosin-2 complex modifies a protein called heparan sulfate so it can be used by the cell.

When there is a mutation in exostosin-1 or exostosin-2, heparan sulfate cannot be processed correctly and is nonfunctional. Although heparan sulfate is involved in many bodily processes, it is unclear how the lack of this protein contributes to the development of osteochondromas.

If the condition is caused by a mutation in the EXT1 gene it is called hereditary multiple osteochondromas type 1. A mutation in the EXT2 gene causes hereditary multiple osteochondromas type 2. While both type 1 and type 2 involve multiple osteochondromas, mutations in the EXT1 gene likely account for 55 to 75 percent of all cases of hereditary multiple osteochondromas, and the severity of symptoms associated with osteochondromas seems to be greater in type 1.

Researchers estimate that about 15 percent of people with hereditary multiple osteochondromas have no mutation in either the EXT1 or the EXT2 gene. It is not known why multiple osteochondromas form in these individuals.

Learn more about the genes associated with Hereditary multiple osteochondromas

  • EXT1
  • EXT2

Inheritance

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Other Names for This Condition

  • Bessel-Hagen disease
  • Diaphyseal aclasis
  • Exostoses, multiple hereditary
  • Familial exostoses
  • Hereditary multiple exostoses
  • Multiple cartilaginous exostoses
  • Multiple congenital exostosis
  • Multiple hereditary exostoses
  • Multiple osteochondromas
  • Multiple osteochondromatosis

Additional Information & Resources

Genetic Testing Information

  • Genetic Testing Registry: Exostoses, multiple, type 2 From the National Institutes of Health
  • Genetic Testing Registry: Multiple congenital exostosis From the National Institutes of Health

Genetic and Rare Diseases Information Center

  • Multiple osteochondromas From the National Institutes of Health

Patient Support and Advocacy Resources

  • National Organization for Rare Disorders (NORD)

Clinical Trials

  • ClinicalTrials.gov From the National Institutes of Health

Catalog of Genes and Diseases from OMIM

  • EXOSTOSES, MULTIPLE, TYPE I; EXT1
  • EXOSTOSES, MULTIPLE, TYPE II; EXT2

Scientific Articles on PubMed

  • PubMed From the National Institutes of Health

References

  • Alvarez CM, De Vera MA, Heslip TR, Casey B. Evaluation of the anatomic burden of patients with hereditary multiple exostoses. Clin Orthop Relat Res. 2007 Sep;462:73-9. doi: 10.1097/BLO.0b013e3181334b51. Citation on PubMed
  • Jager M, Westhoff B, Portier S, Leube B, Hardt K, Royer-Pokora B, Gossheger G, Krauspe R. Clinical outcome and genotype in patients with hereditary multiple exostoses. J Orthop Res. 2007 Dec;25(12):1541-51. doi: 10.1002/jor.20479. Citation on PubMed
  • Pedrini E, Jennes I, Tremosini M, Milanesi A, Mordenti M, Parra A, Sgariglia F, Zuntini M, Campanacci L, Fabbri N, Pignotti E, Wuyts W, Sangiorgi L. Genotype-phenotype correlation study in 529 patients with multiple hereditary exostoses: identification of "protective" and "risk" factors. J Bone Joint Surg Am. 2011 Dec 21;93(24):2294-302. doi: 10.2106/JBJS.J.00949. Citation on PubMed
  • Pei Y, Wang Y, Huang W, Hu B, Huang D, Zhou Y, Su P. Novel mutations of EXT1 and EXT2 genes among families and sporadic cases with multiple exostoses. Genet Test Mol Biomarkers. 2010 Dec;14(6):865-72. doi: 10.1089/gtmb.2010.0040. Epub 2010 Nov 1. Citation on PubMed
  • Pierz KA, Stieber JR, Kusumi K, Dormans JP. Hereditary multiple exostoses: one center's experience and review of etiology. Clin Orthop Relat Res. 2002 Aug;(401):49-59. doi: 10.1097/00003086-200208000-00008. Citation on PubMed
  • Porter DE, Lonie L, Fraser M, Dobson-Stone C, Porter JR, Monaco AP, Simpson AH. Severity of disease and risk of malignant change in hereditary multiple exostoses. A genotype-phenotype study. J Bone Joint Surg Br. 2004 Sep;86(7):1041-6. doi: 10.1302/0301-620x.86b7.14815. Citation on PubMed
  • Stieber JR, Dormans JP. Manifestations of hereditary multiple exostoses. J Am Acad Orthop Surg. 2005 Mar-Apr;13(2):110-20. doi: 10.5435/00124635-200503000-00004. Citation on PubMed
Enlarge image

Related Health Topics

  • Benign Tumors
  • Bone Diseases
  • Genetic Disorders

MEDICAL ENCYCLOPEDIA

  • Genetics

Understanding Genetics

  • What is the prognosis of a genetic condition?
  • How can gene variants affect health and development?
  • What does it mean if a disorder seems to run in my family?
  • What are the different ways a genetic condition can be inherited?
  • How are genetic conditions treated or managed?

Disclaimers

MedlinePlus links to health information from the National Institutes of Health and other federal government agencies. MedlinePlus also links to health information from non-government Web sites. See our disclaimer about external links and our quality guidelines.

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

  • About MedlinePlus
  • What's New
  • Site Map
  • Customer Support
  • Subscribe to RSSRSS
  • Connect with NLM
  • NLM Web Policies
  • Copyright
  • Accessibility
  • Guidelines for Links
  • Viewers & Players
  • HHS Vulnerability Disclosure
  • MedlinePlus Connect for EHRs
  • For Developers
National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health
Last updated March 1, 2016
Return to top

Patients

  • Find a Clinic
  • Health Services
  • Complex Case Management
  • MA / Medicare Assistance

Quick Links

  • Billing Information
  • Careers
  • About Phynet
  • PhyNet News

Network Links

  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com

Home Office

4002 Technology Center Longview TX 75605
Phone: (903) 247-0484
Fax: (903) 247-0485
[email protected]
  • PrimeCareHomeHealth.com
  • PrimeCareNet.com
  • PrimeCareManagers.com
  • Core-Rehab.com
  • GET SOCIAL

© 2021 PhyNet Health • All rights reserved
YOUR LIFE. YOUR CHOICE.

TOP